首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of photosynthetic elements was investigated in leaves of 42 boreal plant species featuring different degrees of submergence (helophytes, neustophytes, and hydatophytes). The mesophyll structure types were identified for all these species. Chlorenchyma tissues and phototrophic cells were quantitatively described by such characteristics as the sizes of cells and chloroplasts in the mesophyll and epidermis, the abundance of cells and chloroplasts in these tissues, the total surface area of cells and chloroplasts per unit leaf area, the number of plastids per cell, etc. The hydrophytes typically had thick leaves (200–350 m) with a well-developed aerenchyma; their specific density per unit area (100–200 mg/dm2) was lower than in terrestrial plants. Mesophyll cells in aquatic plants occupied a larger volume (5–20 × 103m3) than epidermal cells (1–15 × 103m3). The number of mesophyll cells per unit leaf area was nearly 1.5 times higher than that of epidermal cells. Chloroplasts were present in the epidermis of almost all species, including emergent leaves, but the ratio of the chloroplast total number to the number of all plastids varied depending on the degree of leaf submergence. The total number of plastids per unit leaf area (2–6 × 106/cm2) and the surface of chloroplasts per unit leaf area (2–6 cm2/cm2) were lower in hydrophytes than in terrestrial plants from climatically similar habitats. The functional relations between mesophyll parameters were similar for hydrophytes and terrestrial plants (a positive correlation between the leaf weight per unit area, leaf thickness, and the number of mesophyll cells per unit leaf area), although no correlation was found in hydrophytes between the volume of mesophyll cells and the leaf thickness. Phototrophic tissues in aquatic plants contributed a larger fraction to the leaf weight than in terrestrial plants, because the mechanical tissues were less developed in hydrophytes. The CO2assimilation rates by leaves were lower in hydrophytes than in terrestrial plants, because the total surface area of chloroplasts per unit leaf area is comparatively small in hydrophytes, which reduces the conductivity for carbon dioxide diffusion towards the carboxylation sites.  相似文献   

2.
Summary In monogenic, recessive chloroplast mutants of maize which contain chlorophylls, and lycopene or -carotene but no normal carotenoids, great variability in the size of plastids was associated with a number of ultrastructural abnormalities. In the mutant accumulating lycopene some plastids contain dense bundles of lamellae, whereas the chloroplasts of the -carotene mutant show poor thylakoid development. Neither of the mutants was able to form normal grana.A comparison of chlorophyll/carotenoid ratios in different chloroplast fractions of normal and mutant leaves showed that plastids of small size and delicate structure contain relatively less chlorophyll than fully differentiated chloroplasts.  相似文献   

3.
Summary Quantitative variation in seven morphological characteristics (leaf length and width, leaf length/ width ratio, flower, petal and stomata length, and number of chloroplasts in guard cells) were studied in Petunia hybrida plants regenerated from anther tissue culture and belonging to four different classes of ploidy (2n, 2n–3n, 3n–2n, 4n–8n). Results showed that leaf size is not a good characteristic for discriminating between plants of different ploidy — flower and stomata characteristics being more adequate for this purpose. After applying stepwise discriminant analysis the association chloroplast number — leaf length/width ratio — petal length was verified to be more appropriate for the discrimination of ploidy classes.  相似文献   

4.
1. DNA from female and male Sphaerocarpos donnellii (liverwort) plants exhibits at least two species with buoyant densities of 1.703 (main band) and 1.691 (satellite) g cm-3 in CsCl equilibrium gradients. At least part, if not all, of the satellite DNA is localized in plastids. It consists of up to 90% of uniformly sized circular molecules of an average circumference of 38.5 m. Compared to other Chlorophyta, the liverwort's cpDNA is unusually low both in diensity and contour length. — 2. On the hand, cpDNA from the ferns Asplenium nidus and Pteris vittata resembles those of higher plants in buoyant density (1.697 g cm-3) and circumference (about 44.8 m). — 3. Analysis of DNA from the archegoniate chloroplasts with restriction endonucleases indicates chat the cyclic molecules are monomers. — 4. The results show that the circular molecules found in cpDNA of higher plants do not represent the functionally required minimum size of DNA in plastids.Abbreviations cpDNA chloroplast - DNA nucDNA=nuclear - DNA Sal I=restriction endonuclease from Streptomyces albus S - Eco RI restriction endonuclease from Escherichia coli, carrying resistance factor 1 - DTT dithiothreitol (Cleland's reagent) - Saline-EDTA 0.15 M NaCl, 0.1 M ethylene diamine tetraacetic acid, pH 8.0 - SSC 0.15 M NaCl, 0.015 M Na citrate, pH 7.2 - DNAase deoxyribonuclease - Md Megadalton Dedicated to the memory of Prof. Dr. Edgar Knapp  相似文献   

5.
We recently reported that autophagy plays a role in chloroplasts degradation in individually-darkened senescing leaves. Chloroplasts contain approximately 80% of total leaf nitrogen, mainly as photosynthetic proteins, predominantly ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco). During leaf senescence, chloroplast proteins are degraded as a major source of nitrogen for new growth. Concomitantly, while decreasing in size, chloroplasts undergo transformation to non-photosynthetic gerontoplasts. Likewise, over time the population of chloroplasts (gerontoplasts) in mesophyll cells also decreases. While bulk degradation of the cytosol and organelles is mediated by autophagy, the role of chloroplast degradation is still unclear. In our latest study, we darkened individual leaves to observe chloroplast autophagy during accelerated senescence. At the end of the treatment period chloroplasts were much smaller in wild-type than in the autophagy defective mutant, atg4a4b-1, with the number of chloroplasts decreasing only in wild-type. Visualizing the chloroplast fractions accumulated in the vacuole, we concluded that chloroplasts were degraded by two different pathways, one was partial degradation by small vesicles containing only stromal-component (Rubisco containing bodies; RCBs) and the other was whole chloroplast degradation. Together, these pathways may explain the morphological attenuation of chloroplasts during leaf senescence and describe the fate of chloroplasts.Key words: Arabidopsis, autophagy, chloroplast, dark treatment, leaf senescence, nutrients recyclingThe most abundant chloroplast protein is Rubisco, comprising approximately 50% of the soluble protein.1 The amount of Rubisco decreases rapidly in the early phase of leaf senescence, and more slowly in the later phase. During senescence, chloroplasts gradually shrink and their numbers gradually decrease in mesophyll cells.2,3 During leaf senescence, leaves lose approximately 75% of their Rubisco, while chloroplast numbers decrease by only about 15%.4 Previous studies showed chloroplasts localized within the central vacuole by electron microscopy, indicating chloroplast degradation in the highly hydrolytic vacuole.5 However, there was no direct evidence showing translocation of chloroplasts from the cytosol to the vacuole, and the mechanism of transportation was also unclear.Recent reverse genetic approaches are helping to elucidate the autophagy system in plants, which has a similar molecular mechanism as in yeast.611 In Arabidopsis (Arabidopsis thaliana), atg mutants have phenotypically accelerated leaf senescence, insufficient root elongation in nutrient starvation condition and reduced seeds yields, therefore, autophagy is considered to be important for nutrient recycling especially nutrient starvation and senescence in plants.12In Arabidopsis, individually darkened rosette leaves (IDLs) exhibit enhanced senescence.13 Appling IDLs treatment as an experimental model of leaf senescence, we recently demonstrated that chloroplasts are degraded in two different pathways by autophagy, one for RCBs,14,15 and one for whole chloroplast.16 Darkened leaves became pale in 3 to 5 days treatment, while illuminated parts normally grow in both wild-type and autophagy defective mutant, atg4a4b-1. Furthermore, genes specifically expressed during senescence, SAG12 and SEN1, were rapidly upregulated, meanwhile, photosynthetic genes, such as RBCS2B and CAB2B, were gradually downregulated. All analyzed ATG genes were also upregulated under IDL treatment, which suggests that autophagy is important in IDL senescence. It has been reported that approximately three quarter genes of upregulated in IDL were also upregulated in naturally senescing leaves, including the ATG genes.17 This suggests that the autophagy pathways used in IDLs are also used in naturally senescing leaves.Over the 5 day treatment period, chloroplasts of wild-type IDL shrink to approximately one third their original size. In atg4a4b-1, by contrast, chloroplasts shrinkage occurred immediately after the start of IDL treatment after which no further shrinkage was noted. While the shrunk chloroplasts in fixed cells of wild-type were still smooth and round, while wrinkly chloroplasts were observed in atg4a4b-1. At same time, in the living mesophyll cells of wild-type IDL, RCBs accumulated in the vacuole (Fig 1B). The shrinkage of chloroplasts may be due to the consumption of the chloroplast envelope by RCB formation. Immunological quantification of inner and outer envelope proteins might confirm this hypothesis. The chloroplast number was also gradually decreased in IDL of wild-type plants, but no decline in chloroplast number was noted in atg4a4b-1. Chloroplasts exhibiting chlorophyll auto-fluorescence were found in the vacuole of wild-type IDLs, but not in atg4a4b-1 IDLs. These results show that whole chloroplast degradation is also performed by autophagy. However, the transport pathway of whole chloroplasts into the vacuole remains unclear. The chloroplast, even in its shrunken state, is a large organelle, and the autophagosome, the carrier bodies of autophagy, which usually target small spherical organelles like mitochondria and peroxisomes, may be incapable of isolating large organelles. In the yeast autophagy system, specific cellular organelles and fractions are also transported via vacuolar membrane invagination using the microautophagy system.18 RCB uptake into the vacuole is termed macroautophagy, while larger organelles, such as chloroplasts, are engulfed in a process known as microautophagy. Whether there exists a molecular difference between these processes, or whether this is an arbitrary division based solely on the size of the consumed body is unclear.Open in a separate windowFigure 1Visualization of stroma-targeted DsRed and chlorophyll autofluorescence in living mesophyll cells of wild-type plants by laser-scanning confocal microscopy. A excised control leaf (A, Light) and an individually darkened leaf (B, IDL) from plants grown under 14 h-photoperiod condition and a leaf from whole-plant darkened condition (WD, C) for 5days were incubated with 1 µM concanamycin A in 10 mM MES-NaOH (pH 5.5) at 23C° for 20 h in darkness. Stroma-targeted DsRed appears green and chlorophyll fluorescence appears red. In merged images, overlap of DsRed and chlorophyll fluorescence appears yellow. Small vesicles with stromal-targeted DsRed, i.e. RCBs, can be found in the vacuole (A, B). In IDL (B), massive accumulation of stroma-targeted DsRed is entirely seen in the vacuolar lumen and chloroplasts losing DsRed fluorescence are found in some cells. Bars = 50 µm.Whole darkened plants exhibit retarded leaf aging, in contrast to the accelerated senescence in IDLs.13 Whole darkened plants suppress leaf senescence with the leaves retaining green color. After 5 days, in the mesophyll cells of whole darkened plants, any translocation of chloroplast components, stroma-targeted DsRed, RCBs, and whole chloroplasts, into the vacuole could hardly be detected (Fig. 1C). This suggests that autophagy is not induced by darkness alone, and is associated closely with senescence. ATG genes were downregulated in the whole darkened wild-type plants less than control plants during the treatment. Previous studies have shown that following about 5 day period of whole plant darkening, atg mutants lose their ability to protect themselves against photo-damage.7 Upon return to the light, these plant quickly undergo terminal photo-bleaching.Concentrations of chlorophyll, soluble protein, leaf nitrogen and Rubisco rapidly declined under IDL condition of both wild-type and atg4a4b-1. Considering the accumulated fluorescence of stroma-targeted Ds-Red in the vacuole and autophagy dependent size shrinkage of chloroplasts in IDL, in wild-type plants RCB autophagy appear to be responsible for a sizable proportion of chloroplast protein degradation. In atg4a4b-1 which cannot form RCBs, alternative degradation pathways must be upregulated, with chloroplast proteases the most likely candidates. Intriguingly, the decrease in Rubisco concentration proceeds at the almost identical rates in both wild-type and atg4a4b-1 plants, despite the different degradation pathways. It seems likely that the rate of Rubisco degradation may be regulated at an early step in the degradation pathway, by some, as yet unknown, factors.Chloroplasts appear to have the ability to control their volume during cell division, dividing and increasing their density up to the certain level,19 and transferring their cellular components between them via stromules.20 How chloroplasts are able to regulate their volume remains unclear, but it seems likely that chloroplasts grow and divide, like any other bacteria, as long as sufficient resources remain in the environment, in this case the cell. Total chloroplast volume, therefore, may be limited by the availability of carbon, nitrogen, or other nutrients in the cell during leaf emergence. Chloroplasts may be also able to reduce and control their volumes during leaf senescence via multiple degradation pathways. Our next goal is to estimate the contribution of both RCBs and whole chloroplasts autophagy in chloroplast protein degradation during natural leaf senescence. Further investigations are required for understanding the specific molecular mechanisms of RCB production and whole chloroplast degradation.  相似文献   

6.
Humate (10 mg l?1) supplemented to streptomycin solutions (0.1 and 1 mM) stimulates growth of germinating wheat and barley grains and of apical cuttings ofCrassula portulacea after 24 h treatment. It does not, however, prevent formation of albinic leaves. Albinism induced by the streptomycin alone and by streptomycin in presence of humate is irreversible and can be removed neither by an iron salt nor by a chelate added to the nutrition solution or applied on the leaves. Cells of plants treated with streptomycin and humate are larger than those of plants treated with the streptomycin alone. The same is true for plastids which in both cases are colourless and much smaller than chloroplasts of control plants. These plastids in a living or a fixed state have reduced ability to uptake stains. The albinic leaves are anatomically similar to chlorotic leaves of virus infected plants.  相似文献   

7.
The content of chlorophylls (Chls) and carotenoids was studied in the leaves of 42 species of boreal aquatic plants with different degree of submergence (emergent, floating, and submerged) and isopalisade, dorsoventral, and homogenous types of mesophyll structure. Hydrophytes were shown to have a low Chl content (1–2 mg/g fr wt) and low Chls/carotenoids ratio (2.3–3.5) as compared to terrestrial plants. The pigment content per dry wt unit and unit leaf area was dependent on the type of mesophyll structure. It was a consequence of the changes in the parameters of leaf mesophyll structure characterizing the density of photosynthetic elements. In a sequence emergent floating submerged forms, the content of Chls and carotenoids decreased, and the photosynthetic capacity decreased due to a reduction in the chloroplast number per unit leaf area. Adaptation of submerged leaves to low illumination and slow CO2 diffusion changed the functional properties of chloroplasts. An increase in the pigment content in the chloroplasts of submerged leaves (7 × 10–9 mg Chl, 2 × 10–9 mg carotenoids) as compared to emergent and floating leaves was accompanied by a decline in the photosynthetic capacity per Chl comprising 1.6 mg CO2/(mg Chl h) versus 3.9 and 3.8 mg CO2/(mg Chl h) in emergent and floating leaves, respectively.  相似文献   

8.
9.
L. Bergmann  Ch. Berger 《Planta》1966,69(1):58-69
Zusammenfassung Im Dunkeln angezogene Zellkulturen von Nicotiana tabacum var. Samsun enthalten zahlreiche kleine Plastiden mit Stärkekörnern. In den Plastiden sind keine Pigmente nach weisbar. Im Stroma der Plastiden sind nur wenige isolierte Thylakoide und einige Tubuli und Vesikel zu erkennen. Prolamellarkörper, die für die Plastiden im Dunkeln angezogener Blätter charakteristisch sind, wurden nicht beobachtet.Im Licht ergrünen die Kulturen, und gleichzeitig wandeln sich die Plastiden in photosynthetisch aktive Chloroplasten um, die kleine Granastapel aus 4–8 Thylakoiden enthalten.Diese Umwandlung wird — im Gegensatz zur Chloroplastenentwicklung in Blättern — nur durch den blauen Anteil des sichtbaren Lichtes induziert.
Light-color and differentiation of plastids in cell cultures of Nicotiana tabacum var. Samsun
Summary Dark grown cells in cultures of Nicotiana tabacum var. Samsun contain numerous small plastids with starch granules and without any detectable traces of pigments. The submicroscopic structure of these plastids consists of only a few isolated thylacoids, some vesiculi, and tubuli. Prolamellar bodies, characteristic of plastids in dark grown leaves, were not observed. In light the cells start to synthesize chlorophyll and the plastids are transformed into photosynthetic active chloroplasts which possess grana composed of stacks of 4–8 lamellae. It has been shown that this transformation is — in contrast to the development of the chloroplasts in leaves — caused only by the blue region of the visible light.
  相似文献   

10.
Photosynthetic activity, the content of various photosynthetic pigments, and the chloroplast ultrastructure were examined in the leaves of cucumber (Cucumis sativus L.) and pea (Pisum sativum L.) plants of different ages grown under red light (600–700 nm, 100 W/m2). In pea leaves tolerant to red-light irradiation, chloroplast ultrastructure did not essentially change. In the first true leaves of cucumber plants susceptible to red-light irradiation, we observed a considerable increase in the number and size of plastoglobules, the appearance of chloroplasts lacking grana or containing only infrequent grana, and stromal thylakoids. In the upper leaves of 22-day-old cucumber plants, the chloroplast structure was essentially similar to that of the control chloroplasts in white light, and we therefore suppose that these plants have acclimated to red light.  相似文献   

11.
Recent studies have shown that guard cell and coleoptile chloroplasts appear to be involved in blue light photoreception during blue light-dependent stomatal opening and phototropic bending. The guard cell chloroplast has been studied in detail but the coleoptile chloroplast is poorly understood. The present study was aimed at the characterization of the corn coleoptile chloroplast, and its comparison with mesophyll and guard cell chloroplasts. Coleoptile chloroplasts operated the xanthophyll cycle, and their zeaxanthin content tracked incident rates of solar radiation throughout the day. Zeaxanthin formation was very sensitive to low incident fluence rates, and saturated at around 800–1000 mol m–2 s–1. Zeaxanthin formation in corn mesophyll chloroplasts was insensitive to low fluence rates and saturated at around 1800 mol m–2 s–1. Quenching rates of chlorophyll a fluorescence transients from coleoptile chloroplasts induced by saturating fluence rates of actinic red light increased as a function of zeaxanthin content. This implies that zeaxanthin plays a photoprotective role in the coleoptile chloroplast. Addition of low fluence rates of blue light to saturating red light also increased quenching rates in a zeaxanthin-dependent fashion. This blue light response of the coleoptile chloroplast is analogous to that of the guard cell chloroplast, and implicates these organelles in the sensory transduction of blue light. On a chlorophyll basis, coleoptile chloroplasts had high rates of photosynthetic oxygen evolution and low rates of photosynthetic carbon fixation, as compared with mesophyll chloroplasts. In contrast with the uniform chloroplast distribution in the leaf, coleoptile chloroplasts were predominately found in the outer cell layers of the coleoptile cortex, and had large starch grains and a moderate amount of stacked grana and stroma lamellae. Several key properties of the coleoptile chloroplast were different from those of mesophyll chloroplasts and resembled those of guard cell chloroplasts. We propose that the common properties of guard cell and coleoptile chloroplasts define a functional pattern characteristic of chloroplasts specialized in photosensory transduction.Abbreviations Ant or A antheraxanthin - dv/dt fluorescence quenching rate - Fm maximum yield of fluorescence with all PS II reaction centers closed - Fo yield of instantaneous fluorescence with all PS II reaction centers open - Vio or V violaxanthin - Zea or Z zeaxanthin  相似文献   

12.
Summary Transmission of paternal chloroplasts was observed in Nicotiana, considered to inherit organelles in a strictly maternal way. Plants carrying streptomycin resistant plastids were used as pollen donors. Cell lines with paternal plastids in the offspring were selected as green (resistant) sectors on calli induced from the seedlings on streptomycin-containing media. The presence of paternal plastids in the regenerated plants was confirmed by restriction analysis. In the Nicotiana plumbaginifolia xN. plumbaginifolia Np(SR1)3 and the N. plumbaginifolia Np(gos)29 xN. tabacum SR1 crosses 2.5% and 0.07% of the offspring were found to contain paternal (tabacum) plastids, respectively. These plants, however, carried maternal mitochondria exclusively. This sexual cybridization method offers a simple way to transfer chloroplasts solely, a goal not accessible by protoplast fusion.  相似文献   

13.
Mary E. Rumpho  Fred D. Sack 《Planta》1989,179(2):137-147
The usefulness of 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) for in-situ studies of the chloroplast phosphate translocator was evaluated by fluorescence microscopy and radiolabeling of spinach (Spinacia oleracea L.) (C3 plant) and maize (Zea mays L.) (C4 plant) chloroplasts. In maize mesophyll and bundle-sheath chloroplasts and in spinach chloroplasts that were either intact, broken or swollen, DIDS fluorescence was only associated with the chloroplast envelope. Intact chloroplasts often had fluorescent patches corresponding to concave regions of the chloroplast which we assume to be regions enriched in DIDS-binding sites.Incubation of intact or broken spinach chloroplasts or maize mesophyll chloroplasts with [3H2]DIDS resulted in the labeling of a single polypeptide (relative molecular mass, Mr, 30 kDa) in the envelope fraction, in each case. Label in the stromal fraction was not detected when intact chloroplasts were incubated with [3H2]DIDS. However, when broken chloroplasts were incubated with [3H2]DIDS, several polypeptides of various molecular masses were labeled, but not the 30×31-kDa polypeptide. In thylakoid fractions from both broken and intact chloroplasts, a single 30×31-kDa polypeptide was labeled inconsistently. When a mixture of intact maize mesophyll and bundle-sheath chloroplasts was labeled with [3H2]DIDS, extracts of whole chloroplasts displayed radioactivity only in the 30×31-kDa band.We conclude that DIDS is a valuable probe for the in-situ identification and characterization of the 30-kDa protein — the presumptive phosphate translocator — in C3 and C4 chloroplasts since DIDS (1) does not penetrate the inner membrane of the envelope of intact chloroplasts and, therefore, (2) does not bind internal sites in intact chloroplasts, and (3) only binds the 30-kDa protein in the inner membrane of the envelope.Abbreviations CBB Coomassie brilliant blue - DIC differential interference contrast optics - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - [3H2]DIDS 1,2-ditritio-1,2-(2,2-disulfo-4,4-diisothiocyano)diphenylethane - kDa kilodalton - Mr relative molecular mass - PGA 3-phosphoglycerate - Pitranslocator phosphate translocator - SDS sodium dodecyl sulfate  相似文献   

14.
B. Demmig  K. Winter 《Planta》1986,168(3):421-426
Concentrations of four major solutes (Na+, K+, Cl-, proline) were determined in isolated, intact chloroplasts from the halophyte Mesembryanthemum crystallinum L. following long-term exposure of plants to three levels of NaCl salinity in the rooting medium. Chloroplasts were obtained by gentle rupture of leaf protoplasts. There was either no or only small leakage of inorganic ions from the chloroplasts to the medium during three rapidly performed washing steps involving precipitation and re-suspension of chloroplast pellets. Increasing NaCl salinity of the rooting medium resulted in a rise of Na+ und Cl- in the total leaf sap, up to approximately 500 and 400 mM, respectively, for plants grown at 400 mM NaCl. However, chloroplast levels of Na+ und Cl- did not exceed 160–230 and 40–60 mM, respectively, based upon a chloroplast osmotic volume of 20–30 l per mg chlorophyll. At 20 mM NaCl in the rooting medium, the Na+/K+ ratio of the chloroplasts was about 1; at 400 mM NaCl the ratio was about 5. Growth at 400 mM NaCl led to markedly increased concentrations of proline in the leaf sap (8 mM) compared with the leaf sap of plants grown in culture solution without added NaCl (proline 0.25 mM). Although proline was fivefold more concentrated in the chloroplasts than in the total leaf sap of plants treated with 400 mM NaCl, the overall contribution of proline to the osmotic adjustment of chloroplasts was small. The capacity to limit chloroplast Cl- concentrations under conditions of high external salinity was in contrast to an apparent affinity of chloroplasts for Cl- under conditions of low Cl- availability.Abbreviation Chl chlorophyll  相似文献   

15.
R. Höinghaus  J. Feierabend 《Planta》1985,166(4):452-465
To determine the sites of synthesis of chloroplast-envelope proteins, we have analysed several enzyme and translocator functions ascribed to the envelope membranes, and investigated the envelope polypeptide composition of plastids isolated from 70S ribosome-deficient leaves of rye (Secale cereale L.) generated by growing the plants at a temperature of 32°C. Since the ribosomedeficient plastids are also achlorophyllous in light-grown leaves, not only were chloroplasts from mature, green leaves used for comparison, but also those from yellowing, aged leaves as well as etioplasts from dark-grown leaves raised at a temperature of 22° C. A majority of the plastidenvelope polypeptides appeared to be of cytoplasmic origin. The envelopes of ribosome-deficient plastids possessed ATPase (EC 3.6.1.3) activity; this was not, however, dependent on divalent cations, in contrast to the Mn2+- or Mg2+-dependent ATPase which is associated with chloroplast envelopes. Adenylate kinase (EC 2.7.4.3) was present in the stromal fraction of ribosome-deficient plastids and the stromal form of this enzyme is, therefore, of cytoplasmic origin. In contrast to previous findings, adenylate kinase was not, however, specifically associated with the chloroplast-envelope membranes, either in rye or in spinach. Measurements of the uptake of l-[14C]-malate into ribosome-deficient plastids indicated the presence and cytoplasmic origin of the dicarboxylate translocator. Malate uptake into rye etioplasts was, however, low. The phosphate translocator was assayed by the uptake of 3-phospho-[14C]glycerate. While rapid 3-phosphoglycerate uptake was observed for rye chloroplasts and etioplasts, it was hardly detectable for ribosome-deficient, plastids and rather low for chloroplasts from aged leaves. A polypeptide of M r approx. 30000 ascribed to the phosphate translocator was greatly reduced in the envelope patterns of ribosome-deficient plastids and of chloroplasts from aged leaves.  相似文献   

16.
Chloroplast photorelocation movement is extensively studied in C3 but not C4 plants. C4 plants have two types of photosynthetic cells: mesophyll and bundle sheath cells. Mesophyll chloroplasts are randomly distributed along cell walls, whereas bundle sheath chloroplasts are located close to the vascular tissues or mesophyll cells depending on the plant species. The cell-specific C4 chloroplast arrangement is established during cell maturation, and is maintained throughout the life of the cell. However, only mesophyll chloroplasts can change their positions in response to environmental stresses. The migration pattern is unique to C4 plants and differs from that of C3 chloroplasts. in this mini-review, we highlight the cell-specific disposition of chloroplasts in C4 plants and discuss the possible physiological significances.Key words: abscisic acid, aggregative movement, avoidance movement, blue light, bundle sheath cell, C4 plant, chloroplast, cytoskeleton, environmental stress, mesophyll cellChloroplasts can change their intracellular positions to optimize photosynthetic activity and/or reduce photodamage occurring in response to light irradiation. On treating with high-intensity light, the chloroplasts move away from the light to minimize photodamage (avoidance response). Meanwhile, on irradiating with low-intensity light, they move toward the light source to maximize photosynthesis (accumulation response). These chloroplast-photorelocation movements are observed in a wide variety of plant species from green algae to seed plants,13 although little attention has been paid to C4 plants. There is a report stating that monocotyledonous C4 plants showed changes in the light transmission of leaves in response to blue light,4 although the direction of migration of the chloroplasts is not described.C4 plants have two types of photosynthetic cells: mesophyll (M) cells and bundle sheath (BS) cells, which have numerous well-developed chloroplasts. BS cells surround the vascular tissues, while M cells encircle the cylinders of the BS cells (Fig. 1). The C4 dicarboxylate cycle of photosynthetic carbon assimilation is distributed between the two cell types, and acts as a CO2 pump to concentrate CO2 in the BS chloroplasts.5,6 C4 plants are divided into three subtypes on the basis of decarboxylating enzymes: NADP-malic enzyme (ME), NAD-ME and phosphoenolpyruvate carboxykinase. Although the M chloroplasts of all C4 species are randomly distributed along the cell walls, BS chloroplasts are located either in a centripetal (close to the vascular tissue) or in a centrifugal (close to M cells) position, depending on the species (Fig. 1A).7 Thus, C4 M and BS cells have different systems for chloroplast positioning: an M cell-specific system for dispersing chloroplasts and a BS cell-specific system for holding chloroplasts in a centripetal or centrifugal disposition.Open in a separate windowFigure 1The intracellular arrangement of chloroplasts in finger millet (Eleusine coracana), an NAD-ME-type C4 plant. (A) Light micrograph of a transverse section of a leaf blade from a control plant. Bundle sheath (BS) cells surround the vascular tissues, while mesophyll (M) cells encircle the cylinders of the BS cells. BS chloroplasts are well developed, and are located in a centripetal position, whereas M chloroplasts are randomly distributed along the cell walls. B, bundle sheath cell; M, mesophyll cell; V, vascular bundle. (B) Transverse section of a leaf blade from a drought-stressed plant. Most M chloroplasts are aggregatively distributed toward the BS side, while the centripetal arrangement of BS chloroplasts is unchanged. (C and D) Transverse sections of leaf segments irradiated with blue light of intensity 500 µmol m−2 s−1 with or without 30 µM ABA for 8 h (C and D, respectively). The adaxial side of each leaf section (upper side in the photograph) was illuminated. In the absence of ABA, M chloroplasts exhibited avoidance movement on the illuminated side and aggregative movement on the opposite side. In the presence of ABA, aggregative movement was observed on both sides. Scale bars = 50 µm.  相似文献   

17.
Mechanisms restricting the accumulation of chloroplast glycolipids in achlorophyllous etiolated or heat-treated 70S ribosome-deficient rye leaves (Secale cereale L. cv “Halo”) and thereby coupling glycolipid formation to the availability of chlorophyll, were investigated by comparing [14C]acetate incorporation by leaf segments of different age and subsequent chase experiments. In green leaves [14C]acetate incorporation into all major glycerolipids increased with age. In etiolated leaves glycerolipid synthesis developed much more slowly. In light-grown, heat-bleached leaves [14C]acetate incorporation into glycolipids was high at the youngest stage but declined with age. In green leaves [14C]acetate incorporation into unesterified fatty acids and all major glycerolipids was immediately and strongly diminished after application of an inhibitor of chlorophyll synthesis, 4,6-dioxoheptanoic acid. The turnover of glyco- or phospholipids did not differ markedly in green, etiolated, or heat-bleached leaves. The total capacity of isolated ribosome-deficient plastids for fatty acid synthesis was not much lower than that of isolated chloroplasts. However, the main products synthesized from [14C]acetate by chloroplasts were unesterified fatty acids, phosphatidic acid, and diacylglycerol, while those produced by ribosome-deficient plastids were unesterified fatty acids, phosphatidic acid, and phosphatidylglycerol. Isolated heat-bleached plastids exhibited a strikingly lower galactosyltransferase activity than chloroplasts, suggesting that this reaction was rate-limiting, and lacked phosphatidate phosphatase activity.  相似文献   

18.

Background

The mechanism of the light-dependent movements of chloroplasts is based on actin and myosin but its details are largely unknown. The movements are activated by blue light in terrestrial angiosperms. The aim of the present study was to determine the role of myosin associated with the chloroplast surface in the light-induced chloroplast responses in Arabidopsis thaliana. The localization of myosins was investigated under blue light intensities generating avoidance and accumulation responses of chloroplasts. The localization was compared in wild type plants and in phot2 mutant lacking the avoidance response.

Results

Wild type and phot2 mutant plants were irradiated with strong (36 µEm−2s−1) and/or weak (0.8 µEm−2s−1) blue light. The leaf tissue was immunolabeled with antimyosin antibodies. Different arrangements of myosins were observed in the mesophyll depending on the fluence rate in wild type plants. In tissue irradiated with weak blue light myosins were associated with chloroplast envelopes. In contrast, in tissue irradiated with strong blue light chloroplasts were almost myosin-free. The effect did not occur in red light and in the phot2 mutant.

Conclusions

Myosin displacement is blue light specific, i.e., it is associated with the activation of a specific blue-light photoreceptor. We suggest that the reorganization of myosins is essential for chloroplast movement. Myosins appear to be the final step of the signal transduction pathway starting with phototropin2 and leading to chloroplast movements.Key Words: Arabidopsis, blue light, chloroplast movements, myosins, phototropins  相似文献   

19.
N. Sato  O. Misumi  Y. Shinada  M. Sasaki  M. Yoine 《Protoplasma》1997,200(3-4):163-173
Summary Localization and protein composition of plastid nucleoids was analyzed in light-grown pea seedlings at various stages of leaf development. In young plastids of unopened leaf buds, nucleoids were abundant and localized in the periphery of plastids, whereas, in mature leaves, chloroplasts contained nucleoids within narrow spaces restricted by thylakoids or grana. The migration of nucleoids into the interior of plastids preceded the formation of grana, and hence, the maturation of the photosynthetic apparatus. The protein composition of nucleoids was considerably different in young plastids and mature chloroplasts. Polypeptides with a molecular mass of 70–100 kDa predominated in the nucleoids of young plastids, whereas polypeptides with molecular mass of 20–30 kDa were abundant in the nucleoids of mature chloroplasts. Immuno-blot analysis with antibodies against the nucleoids of young plastids identified various polypeptides that were significantly more abundant in the nucleoids of young plastids than in the nucleoids of mature chloroplasts. These results demonstrate that plastid nucleoids are subject to dynamic changes in both localization and composition during the normal development of chloroplasts in the light.Abbreviations DAPI 4,6-diamidino-2-phenylindol - DiOC6 3,3-dihexyloxacarbocyanine iodide  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号