首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemic preconditioning has shown to reduce apoptosis in the intestinal mucosa during ischemia/reperfusion. This study evaluated if the decrease of apoptotic events found during preconditioning could be related with a reduction of the substrate (i.e., xanthine/hypoxanthine) available for xanthine oxidase (XO). Animals were randomly assigned to the following study groups: C, control; I/R, ischemia/reperfusion; P+I/R, ischemic preconditioning; P+I/R+H/X, ischemic preconditioning plus hypoxanthine/xanthine, and P+I/R+H/X+Allo, ischemic preconditioning plus hypoxanthine/xanthine plus allopurinol. Caspase-3 activity, DNA fragmentation and TUNEL staining increased in the I/R group compared to control. Ischemic preconditioning (P+I/R group) was able to reverse these apoptotic variables to a level similar to that of control rats. The addition of hypoxanthine/xanthine to rats subjected to ischemic preconditioning (P+I/R+H/X group) showed the highest apoptotic activity; however, further addition of allopurinol (P+I/R+H/X+Allo group) decreased significantly apoptotic activity and events. In conclusion, intestinal ischemic preconditioning is able to reduce apoptosis during the following sustained ischemia/reperfusion event because of a reduced accumulation of xanthine/hypoxanthine nucleotide.  相似文献   

2.
氧自由基在应激性胃溃疡中的发病学意义   总被引:25,自引:1,他引:24  
李铁  张席锦 《生理学报》1993,45(3):286-291
本工作研究了氧自由基在大鼠冷冻束缚应激性胃溃疡中的发病学意义。实验结果如下:(1)以超氧自由基清除剂超氧化物歧化酶(SOD)或羟自由基清除剂二甲亚砜和甘露醇预先处理大鼠,均可显著地减轻胃粘膜损伤;(2)应激时,胃粘膜内的脂质过氧化分解产物丙二醛的含量显著升高;(3)组织化学的研究显示,胃粘膜层含有丰富的黄嘌呤氧化酶,其活性在应激时明显升高,预先用别嘌呤醇处理大鼠以抑制黄嘌呤氧化酶的活性,可使胃粘膜损伤显著减轻。上述结果提示,氧自由基是应激性胃溃疡的重要致病因子,而黄嘌呤氧化酶活性的升高似可能为应激时氧自由基生成增加的重要原因。  相似文献   

3.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

4.
Preincubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) in Ca2+-free Krebs buffer resulted in a 27% inhibition of synaptosomal gamma-aminobutyric acid (GABA) uptake. Addition of 1.5 mM CaCl2 increased the inhibition with X/XO to 46%, and inhibition was essentially complete when the calcium ionophore A23187 also was included. In other studies, preincubation of purified rat brain mitochondria with the combination of X/XO and 4 microM CaCl2 produced a significant (38%) decrease in state 3 respiration with glutamate/malate as substrate that was not seen with either X/XO or Ca2+ alone. Similar results were obtained using cultured mouse spinal cord neurons in which incubation with X/XO/ADP/FeCl2 and A23187 produced membrane damage as assessed by a 32% reduction of neuronal Na+, K+-ATPase activity. Neither X/XO/ADP/FeCl2 nor A23187 alone caused detectable inhibition. These results demonstrate the synergistic damaging effect of free radicals and Ca2+ on membrane function. In addition, they suggest that free radical-induced peroxidation of membrane lipid, occurring focally during complete or nearly complete ischemia in vivo, could result in intense cellular perturbation when coupled with increased intracellular Ca2+.  相似文献   

5.
Reperfusion injury following ischemia is thought to be the consequence of reactive oxygen species. Role of these free radicals on the damaging effects of ischemia in colon has been investigated. A rat experimental model was used in which colon was subjected to ischemia and reperfusion and mucosal damage was assessed by biochemical and histological studies. Activity of myeloperoxidase, a neutrophil marker, was increased after ischemia (I) and ischemia/Reperfusion (I/R). Lipid peroxidation products such as malonaldehyde and conjugated diene did not show any change in the experimental colonic mucosa as compared to control. Mucosal level of low molecular weight thiols were found to be altered after I/R. A decrease in -tocopherol level was noticed after ischemia and the decrease was prominent after reperfusion. Histology indicated morphological changes in colon due to ischemia and reperfusion and the damage was more severe after reperfusion. These results suggest that colonic mucosal damage occurs during I/R and free radicals generated by the infiltrated neutrophils may play a role in this damaging process.  相似文献   

6.
Abstract

In ischemia–reperfusion (I/R)-induced tissue injury, oxygen radicals can be generated by several mechanisms. One of the important sources of oxygen radicals is thought to be mitochondrial respiration. The aim of this study was to investigate the antioxidative defense effect of the mitochondrial electron transport inhibitor, rotenone using the I/R-induced rat intestinal mucosal injury model in vivo. Intestinal ischemia was induced for 30 min by applying a small clamp to the superior mesenteric artery in rats. Rotenone at a dose of 100 mg/kg was given to rats orally 2 h before the ischemia. Intraluminal hemoglobin and protein levels, the mucosal content of thiobarbituric acid-reactive substances (TBARS), the mucosal myeloperoxidase activity, and the content of inflammatory cytokines (CINC-1, TNF-α) were all significantly increased from mean basal levels after 60 min of reperfusion. These increases after I/R were inhibited by treatment with rotenone at a dose of 100 mg/kg. Co-administration with succinate (100 mg/kg), a substrate of the mitochondrial electron transport system, cancelled significant reduction of intraluminal hemoglobin and mucosal TBARS treated with rotenone alone. The results of the present study indicate that rotenone inhibited lipid peroxidation and reduced development of the intestinal mucosal inflammation induced by I/R in rats. This investigation suggests that rotenone has potential as a new therapeutic agent for reperfusion injury.  相似文献   

7.
In ischemia-reperfusion (I/R)-induced tissue injury, oxygen radicals can be generated by several mechanisms. One of the important sources of oxygen radicals is thought to be mitochondrial respiration. The aim of this study was to investigate the antioxidative defense effect of the mitochondrial electron transport inhibitor, rotenone using the I/R-induced rat intestinal mucosal injury model in vivo. Intestinal ischemia was induced for 30 min by applying a small clamp to the superior mesenteric artery in rats. Rotenone at a dose of 100 mg/kg was given to rats orally 2 h before the ischemia. Intraluminal hemoglobin and protein levels, the mucosal content of thiobarbituric acid-reactive substances (TBARS), the mucosal myeloperoxidase activity, and the content of inflammatory cytokines (CINC-1, TNF-alpha) were all significantly increased from mean basal levels after 60 min of reperfusion. These increases after I/R were inhibited by treatment with rotenone at a dose of 100 mg/kg. Co-administration with succinate (100 mg/kg), a substrate of the mitochondrial electron transport system, cancelled significant reduction of intraluminal hemoglobin and mucosal TBARS treated with rotenone alone. The results of the present study indicate that rotenone inhibited lipid peroxidation and reduced development of the intestinal mucosal inflammation induced by I/R in rats. This investigation suggests that rotenone has potential as a new therapeutic agent for reperfusion injury.  相似文献   

8.
Oxygen-derived free radicals have been implicated in a variety of diseases and pathologic processes, including ischemia reperfusion injury (IRI). Based on experimental work with rat skin-flap models, the enzyme xanthine oxidase (XO) has been proposed as a major source of free radicals responsible for tissue injury and flap necrosis. The presence of this enzyme is variable within different tissues of a specific species and between species. Xanthine oxidase levels in pig and human skin have not previously been reported. The activity of xanthine oxidase in the skin of rats (N = 16), pigs (N = 7), and humans (N = 8) was measured after varying intervals of ischemia and in the rat also following reperfusion. Control pig and human skin were found to contain minimal enzyme activity, almost 40 times less than that of the rat. In the rat, xanthine oxidase activity was stable throughout a prolonged period of ischemia, and a significant decrease in activity was found after 12 hours of reperfusion (p less than 0.05). In humans, xanthine oxidase activity was unaffected by ischemia time, and in the pig, it did not increase until 24 hours of ischemia (p less than 0.05). The potential sources of free radicals and the mechanism of action of xanthine oxidase and its inhibitor allopurinol in improving flap survival in different species are reviewed.  相似文献   

9.
The xanthine oxidoreductase (XOD) system, which consists of xanthine dehydrogenase (XDH) and xanthine oxidase (XO), is one of the major sources of free radicals in biological systems. The XOD system is present predominantly in the normal tissues as XDH. In damaged tissues, XDH is converted into XO, the form that generates free radicals. Therefore, the XO form of the XOD system is expected to be found mainly in radiolytically damaged tissue. In this case, XO may catalyze the generation of free radicals and potentiate the effect of radiation. Inhibition of the XOD system is likely to attenuate the detrimental effects of ionizing radiation. We have examined this possibility using allopurinol and folic acid, which are known inhibitors of the XOD system. Swiss albino mice (7-8 weeks old) were given single doses of allopurinol and folic acid (12.5-50 mg/kg) intraperitoneally and irradiated with different doses of gamma radiation at a dose rate of 0.023 Gy/s. The XO and XDH activities as well as peroxidative damage and lactate dehydrogenase (LDH) were determined in the liver. An enhancement of the activity of XO and a simultaneous decrease in the activity of XDH were observed at doses above 3 Gy. The decrease in the ratio XDH/XO and the unchanged total activity (XDH + XO) suggested the conversion of XDH into XO. The enhanced activity of XO may potentiate radiation damage. The increased levels of peroxidative damage and the specific activity of LDH in the livers of irradiated mice supported this possibility. Allopurinol and folic acid inhibited the activities of XDH and XO, decreased their ratio (XDH/XO), and lowered the levels of peroxidative damage and the specific activity of LDH. These results suggested that allopurinol and folic acid have the ability to inhibit the radiation-induced changes in the activities of XDH and XO and to attenuate the detrimental effect of this conversion, as is evident from the diminished levels of peroxidative damage and the decreased activity of LDH.  相似文献   

10.
Hepatic ischemia-reperfusion (I/R) can lead to liver failure in association with remote organ damage, both of which have significant rates of morbidity and mortality. In this study, novel spin trapping and histopathological techniques have been used to investigate in vivo free radical formation in a rat model of warm liver I/R injury. 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) was administered to rats via intraperitoneal injection at a single dose of 1.5g of pure DMPO/kg body wt 2h before the initiation of liver ischemia. Blood vessels supplying the median and left lateral hepatic lobes were occluded with an arterial clamp for 60min, followed by 60min reperfusion. The effects of DMPO on I/R injury were evaluated by assessing the hepatic ultrastructure via transmission electron microscopy and by histopathological scoring. Immunoelectron microscopy was performed to determine the cellular localization of DMPO nitrone adducts. Levels of nitrone adducts were also measured to determine in situ scavenging of protein and DNA radicals. Total histopathological scoring of cellular damage was significantly decreased in hepatic I/R injury after DMPO treatment. DMPO treatment significantly decreased the hepatic conversion of xanthine oxidase and 4-hydroxynonenal formation in I/R injury compared to the untreated I/R group. The distribution of gold-nanoparticle-labeled DMPO nitrone adducts was observed in mitochondria, cytoplasm, and nucleus of hepatocytes. The formation of protein- and DNA-nitrone adducts was increased in DMPO-treated I/R livers compared to DMPO controls, indicating increased in situ protein and DNA radical formation and scavenging by DMPO. These results suggest that DMPO reduces I/R damage via protection against oxidative injury.  相似文献   

11.
Exhaustive exercise generates free radicals. However, the source of this oxidative damage remains controversial. The aim of this paper was to study further the mechanism of exercise-induced production of free radicals. Testing the hypothesis that xanthine oxidase contributes to the production of free radicals during exercise, we found not only that exercise caused an increase in blood xanthine oxidase activity in rats but also that inhibiting xanthine oxidase with allopurinol prevented exercise-induced oxidation of glutathione in both rats and in humans. Furthermore, inhibiting xanthine oxidase prevented the increases in the plasma activity of cytosolic enzymes (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase) seen after exhaustive exercise. Our results provide evidence that xanthine oxidase is responsible for the free radical production and tissue damage during exhaustive exercise. These findings also suggest that mitochondria play a minor role as a source of free radicals during exhaustive physical exercise.  相似文献   

12.
Objectives: We investigated the mutual effects of overt hypothyroidism and prolonged sunlight exposure on free radical accumulation and oxidative skin damage.

Methods: Free radical accumulation was evaluated by monitoring the transformation of 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) into MTT-formazan. The pro-oxidant enzymes xanthine oxidase (XO) and NADPH-diaphorase were measured in the skin. XO activity was estimated based on the yield of uric acid, while NADPH-diaphorase reactivity was monitored histochemically as an indirect marker of nitric oxide synthase and nitric oxide activity. Cellular damage was determined by malondialdehyde formation, a marker for lipid peroxidation.

Results: In the skin of both euthyroid and hypothyroid animals, solar simulated ultraviolet irradiance increased the activity of XO and the NADPHdiaphorase reactivity as a protective response to formation of free radicals, such as reactive oxygen or nitrogen species. These pro-oxidant enzymes diminished in hypothyroid rats. Accumulation of the same amount of free radicals led to similar peroxidation in both hypothyroid and irradiated euthyroid rats. Hypothyroid skin after UV-exposure showed even greater lipid peroxidation.

Discussion: The hypothyroid state could be a risk factor for enhanced oxidative skin damage in chronic photo-exposed skin due to oxidative stress. The lipid peroxidation is one of the major pathways by which photo-oxidative stress promotes photocarcinogenesis and photo-aging.  相似文献   


13.
Recent data suggest that oxygen free radicals are implicated in the pathogenesis of ischemic injury. This study evaluates the effects of allopurinol, a xanthine oxidase (XO) inhibitor, on malonaldehyde generation, free sulfhydryl levels, oxygen consumption, and water contents of rat gastrocnemius muscles of female Sprague-Dawley rats subjected to tourniquet shock and after hind-limb reperfusion. Serum lactic dehydrogenase isozyme patterns after ligature release were also examined. Our results show that the four muscle parameters were not altered during 5 hr of ischemia, but that on hind-limb reperfusion, malonaldehyde production, SH levels, O2 consumption, and water contents were significantly altered in the control animals, but not in those pretreated with allopurinol. LDH serum patterns of the untreated animals showed the presence of all five isoforms; these were much less evident in the drug-protected rats. Our data suggest that following ischemia, the affected muscles are unable to recover their normal function when reperfusion is resumed. The subsequent damage is probably due to the generation of cytotoxic superoxide radicals formed during the XO-catalyzed transformation of hypoxanthine to uric acid on tissue reoxygenation. The severity of tissue damage is related to the duration of the ischemic episode possibly due to hypoxanthine accumulation during ischemia.  相似文献   

14.
异丙酚对家兔肝缺血/再灌注后抗氧化能力改变的影响   总被引:13,自引:1,他引:12  
目的: 探讨氧自由基(OFR)在肝缺血/再灌注损伤(HI/RI)中的作用及异丙酚对其的影响.方法: 实验兔随机分为假手术对照组、肝缺血/再灌注组和肝缺血/再灌注加异丙酚治疗组,分别在肝缺血前、缺血45 min、再灌注45 min共3个时相点,检测血浆及肝组织超氧化物歧化酶(SOD)活性、黄嘌呤氧化酶(XO)活性、丙二醛( MDA)浓度及谷丙转氨酶(ALT)值,并行肝组织电镜观察.结果: 肝缺血/再灌注期间,血浆XO、MDA及ALT显著高于、SOD明显低于假手术对照组(P<0.05和P<0.01);肝组织XO及MDA显著高于、SOD明显低于假手术对照组(P<0.05和P<0.01);肝组织超微结构发生异常改变.异丙酚可逆转上述指标的异常变化,与肝缺血/再灌注组相比有显著性差异(P<0.05和P<0.01).结论: OFR在HI/RI发生发展中起介导作用;异丙酚可通过降低氧自由基水平(增强SOD活性、减弱XO活性),拮抗脂质过氧化反应(降低MDA浓度),从而减轻HIRI.  相似文献   

15.
In the feline intestine studies have implicated superoxide (O.-) and other oxygen derived free radicals as initiators of injury as measured by increased capillary permeability during the reperfusion period. Biochemical mechanisms of this free radical generation include: xanthine oxidase dependent O.- production, hydrogen peroxide (H2O2) formation by superoxide dismutase (SOD), hydroxyl radical (OH-) production via the Haber-Weiss reaction, and lipid radical formation from membrane peroxidation. Pathological consequences of these events include inflammatory neutrophil infiltration, damage to the collagen and mucosal basement membrane, increased capillary permeability, edema, cell degeneration and necrosis. Animal models of neonatal necrotizing enterocolitis (NNEC) indicate that intestinal injury occurs after the etiologic factors (hypothermia, hypoxia) are removed. In order to determine the role of active oxygen species in the pathogenesis of NNEC, weanling hamsters and neonatal piglets were cold stressed and activities of pro/antioxidant enzymes were determined, and histopathologic and ultrastructural studies were performed. Cold stressed weanling hamsters showed a 55.7% (P less than 0.05) decrease in xanthine dehydrogenase/xanthine oxidase activity ratio. Light microscopy revealed scattered colonic mucosal erosions and submucosal edema in 50% of cold stressed animals. Transmission electron microscopy demonstrated degeneration of colonic mucosal epithelial cells, enlarged intracellular spaces, cytoplasmic vacuolization, and nuclear membrane swelling. The colonic serosa was also edematous and infiltrated with bacteria. Large intestinal tissue from cold stressed neonatal piglets showed a significant increase (P less than 0.05) in Mn and Cu, Zn, SOD, CAT, GSH-Red, total GSH, and Glc6-PD at 0 and 12 hrs. post stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The aim of this study was to compare the effects of two nonsteroidal anti-inflammatory drugs (NSAID), members of the same family with a different cyclooxygenase (COX) inhibition selectivity, meloxicam, preferent COX-2 inhibitor, and piroxicam, preferent COX-1 inhibitor, on oxygen radical generation in rat gastric mucosa. Therefore, the activity of oxidative stress-related enzymes such as xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione (GSH) homeostasis were studied in rats. Gastric prostaglandins (PG) were also assessed as a measure of COX-1 inhibition. Both oxicams produced a similar extent of the gastric mucosal damage and a significant decrease in PGE 2 synthesis, however only piroxicam induced an increase of both myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)- &#102 content in the gastric mucosa, indicating that neutrophil-derived free radicals were involved in gastric injury. Furthermore, both compounds reduced SOD activity and increased XO activity in gastric mucosa. Our results also revealed modifications in GSH metabolism: although glutathione peroxidase (GSH-px) activity was unaffected by meloxicam or piroxicam administration, both glutathione reductase (GSSG-rd) activity and total GSH content were significantly decreased after dosing. These results suggest that under our experimental conditions, meloxicam, preferential COX-2 inhibitor causes rates of gastric lesion in rats comparable to those seen with the traditional NSAID piroxicam, preferential COX-1 inhibitor. In addition to suppression of systemic COX activity, oxygen radicals, probably derived via the XO, and neutrophils play an important role in the production of damage induced by both oxicams. Moreover, the decrease in SOD activity and changes in glutathione homeostasis in gastric mucosa may also contribute to pathogenesis of meloxicam- or piroxicam-induced gastropathy.  相似文献   

17.
Hepatic lipid peroxidation has been implicated in the pathogenesis of alcohol-induced liver injury, but the mechanism(s) by which ethanol metabolism or resultant free radicals initiate lipid peroxidation is not fully defined. The role of the molybdenum-containing enzymes aldehyde oxidase and xanthine oxidase in the generation of such free radicals was investigated by measuring alkane production (lipoperoxidation products) in isolated rat hepatocytes during ethanol metabolism. Inhibition of aldehyde oxidase and xanthine oxidase (by feeding tungstate at 100 mg/day per kg) decreased alkane production (80-95%), whereas allopurinol (20 mg/kg by mouth), a marked inhibitor of xanthine oxidase, inhibited alkane production by only 35-50%. Addition of acetaldehyde (0-100 microM) (in the presence of 50 microM-4-methylpyrazole) increased alkane production in a dose-dependent manner (Km of aldehyde oxidase for acetaldehyde 1 mM); menadione, an inhibitor of aldehyde oxidase, virtually inhibited alkane production. Desferrioxamine (5-10 microM) completely abolished alkane production induced by both ethanol and acetaldehyde, indicating the importance of catalytic iron. Thus free radicals generated during the metabolism of acetaldehyde by aldehyde oxidase may be a fundamental mechanism in the initiation of alcohol-induced liver injury.  相似文献   

18.
The aim of this study was to compare the effects of two nonsteroidal anti-inflammatory drugs (NSAID), members of the same family with a different cyclooxygenase (COX) inhibition selectivity, meloxicam, preferent COX-2 inhibitor, and piroxicam, preferent COX-1 inhibitor, on oxygen radical generation in rat gastric mucosa. Therefore, the activity of oxidative stress-related enzymes such as xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione (GSH) homeostasis were studied in rats. Gastric prostaglandins (PG) were also assessed as a measure of COX-1 inhibition. Both oxicams produced a similar extent of the gastric mucosal damage and a significant decrease in PGE2 synthesis, however only piroxicam induced an increase of both myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)-alpha content in the gastric mucosa, indicating that neutrophil-derived free radicals were involved in gastric injury. Furthermore, both compounds reduced SOD activity and increased XO activity in gastric mucosa. Our results also revealed modifications in GSH metabolism: although glutathione peroxidase (GSH-px) activity was unaffected by meloxicam or piroxicam administration, both glutathione reductase (GSSG-rd) activity and total GSH content were significantly decreased after dosing. These results suggest that under our experimental conditions, meloxicam, preferential COX-2 inhibitor causes rates of gastric lesion in rats comparable to those seen with the traditional NSAID piroxicam, preferential COX-1 inhibitor. In addition to suppression of systemic COX activity, oxygen radicals, probably derived via the XO, and neutrophils play an important role in the production of damage induced by both oxicams. Moreover, the decrease in SOD activity and changes in glutathione homeostasis in gastric mucosa may also contribute to pathogenesis of meloxicam- or piroxicam-induced gastropathy.  相似文献   

19.
Rebamipide, a novel antipeptic ulcer drug, 2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinone-4-yl]-propionic acid, was studied for its inhibitory effect on gastric xanthine oxidase activity and type conversion of the enzyme that has a profound role in free radical generation. Intraperitoneal administration of rebamipide at 60 mg/kg body weight reduced gastric mucosal hemorrhagic lesions and lipid peroxidation, which was proportional to the inhibitory effect of rebamipide on alcohol-induced xanthine oxidase-type conversion and enzyme activity. It was also observed that the activity of xanthine oxidase was significantly inhibited by administration of rebamipide at 60 mg/kg body weight, leading to a significant reduction of lipid peroxide content in alcohol-treated rats. The results suggest that alcohol-induced gastric mucosal lesions might be, in part, due to the increased activity of xanthine oxidase and type conversion rate of the enzyme and the protective effect of rebamipide on gastric mucosal lesions would result from its ability to protect against oxidative stress on gastric mucosal lesions of alcohol-treated rats.  相似文献   

20.
Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training   总被引:10,自引:0,他引:10  
The purposes of this study were to determine whether exercise training induces increases in skeletal muscle antioxidant enzymes and to further characterize the relationship between oxidative capacity and antioxidant enzyme levels in skeletal muscle. Male Sprague-Dawley rats were exercise trained (ET) on a treadmill 2 h/day at 32 m/min (8% incline) 5 days/wk or were cage confined (sedentary control, S) for 12 wk. In both S and ET rats, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) activities were directly correlated with the percentages of oxidative fibers in the six skeletal muscle samples studied. Muscles of ET rats had increased oxidative capacity and increased GPX activity compared with the same muscles of S rats. However, SOD activities were not different between ET and S rats, but CAT activities were lower in skeletal muscles of ET rats than in S rats. Exposure to 60 min of ischemia and 60 min of reperfusion (I/R) resulted in decreased GPX and increased CAT activities but had little or no effect on SOD activities in muscles from both S and ET rats. The I/R-induced increase in CAT activity was greater in muscles of ET than in muscles of S rats. Xanthine oxidase (XO), xanthine dehydrogenase (XD), and XO + XD activities after I/R were not related to muscle oxidative capacity and were similar in muscles of ET and S rats. It is concluded that although antioxidant enzyme activities are related to skeletal muscle oxidative capacity, the effects of exercise training on antioxidant enzymes in skeletal muscle cannot be predicted by measured changes in oxidative capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号