首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Modeling and experimental studies have shown that pulsed electric fields of nanosecond duration and megavolt per meter amplitude affect subcellular structures but do not lead to the formation of large pores in the outer membrane. This "intracellular electromanipulation" requires the use of pulse generators which provide extremely high power but low energy pulses. In this study, we describe the concept of the required pulsed power sources, their design, operation, and the necessary diagnostics. Two types of pulse generators based on the Blumlein line principle have been developed and are described here. One system is designed to treat a large number of cells in cuvettes holding volumes from 0.1 to 0.8 ml. Pulses of up to 40 kV amplitude, with a duration of 10 ns and a rise time close to 1 ns can be applied to the cuvette. For an electrode gap of 1 mm this voltage corresponds to an average electric field of 40 MV/m. The second system allows for real time observation of individual cells under a microscope. It generates pulses of 10-300 ns duration with a rise time of 3.5 ns and voltage amplitudes up to 1 kV. Connected to a microreactor with an electrode gap of 100 microm, electric fields up to 10 MV/m are applied.  相似文献   

2.
Electroendocytosis involves the exposure of cells to pulsed low electric field and is emerging as a complementary method to electroporation for the incorporation of macromolecules into cells. The present study explores the underlying mechanism of electroendocytosis and its dependence on electrochemical byproducts formed at the electrode interface. Cell suspensions were exposed to pulsed low electric field in a partitioned device where cells are spatially restricted relative to the electrodes. The cellular uptake of dextran-FITC was analyzed by flow cytometery and visualized by confocal microscopy. We first show that uptake occurs only in cells adjacent to the anode. The enhanced uptake near the anode is found to depend on electric current density rather than on electric field strength, in the range of 5 to 65 V/cm. Electrochemically produced oxidative species that impose intracellular oxidative stress, do not play any role in the stimulated uptake. An inverse dependence is found between electrically induced uptake and the solution’s buffer capacity. Electroendocytosis can be mimicked by chemically acidifying the extracellular solution which promotes the enhanced uptake of dextran polymers and the uptake of plasmid DNA. Electrochemical production of protons at the anode interface is responsible for inducing uptake of macromolecules into cells exposed to a pulsed low electric field. Expanding the understanding of the mechanism involved in electric fields induced drug-delivery into cells, is expected to contribute to clinical therapy applications in the future.  相似文献   

3.
Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns.  相似文献   

4.
This work describes the use of low-voltage (0.5 - 5 V) pulsed electric fields to prevent Pseudomonas aeruginosa biofilm development. Interdigitated electrodes (IDEs) with 29-mum spacing between 22-mum-wide electrodes, were used as a platform where the effect of localised, high-strength electric fields could be tested. Alternating current, square-wave pulses were applied to the IDEs in 1 sec intervals. A two-level, three-variable factorial design experiment was used to detect the effects of applied voltage, frequency, and pulse duty ratio (i.e. percentage of pulsing time over one cycle) on the inhibition of biofilm formation. The observations indicated that a pulse configuration of 1% duty ratio, 5 V, and 200 Hz frequency reduced the area of the electrodes covered by biofilm by 50%. In general, the application of low-duty ratio pulses had a positive effect on preventing biofouling. Comparatively, frequency and applied voltage were observed to have less influence on biofouling.  相似文献   

5.
Leukemic cell intracellular responses to nanosecond electric fields   总被引:13,自引:0,他引:13  
Intense, nanosecond (ns) pulsed electric fields (PEFs) are known to affect the intracellular structures of cells. The probability of preferentially inducing subcellular effects increases with decreasing pulse length while effects on the plasma membrane are diminished. This has been demonstrated by applying electrical pulses of 60 and 10 ns duration with electric field intensities of up to 6.5 MV/m to HL-60 cells. Using confocal microscopy, PEF-induced changes in the integrity of the plasma membrane and nucleus were measured by recording fluorescence changes with propidium iodide (PI) and acridine orange (AO), respectively. Results suggest that high voltage, nsPEFs target the nucleus and modify cellular functions while plasma membrane effects are delayed and become smaller as pulse duration is shortened. Cell viability was not affected by these pulses. In spite of the high pulsed electric fields, thermal effects can be neglected because of the ultrashort pulse duration. The results suggest application of this ultrashort pulse technology to modulate nuclear structure and function for potential therapeutic benefit.  相似文献   

6.
High-amplitude, MV/m, nanosecond pulsed electric fields (nsPEF) have been hypothesized to cause nanoporation of the plasma membrane. Phosphatidylserine (PS) externalization has been observed on the outer leaflet of the membrane shortly after nsPEF exposure, suggesting local structural changes in the membrane. In this study, we utilized fluorescently-tagged Annexin V to observe the externalization of PS on the plasma membrane of isolated Chinese Hamster Ovary (CHO) cells following exposure to nsPEF. A series of experiments were performed to determine the dosimetric trends of PS expression caused by nsPEF as a function of pulse duration, τ, delivered field strength, ED, and pulse number, n. To accurately estimate dose thresholds for cellular response, data were reduced to a set of binary responses and ED50s were estimated using Probit analysis. Probit analysis results revealed that PS externalization followed the non-linear trend of (τ*ED 2)−1 for high amplitudes, but failed to predict low amplitude responses. A second set of experiments was performed to determine the nsPEF parameters necessary to cause observable calcium uptake, using cells preloaded with calcium green (CaGr), and membrane permeability, using FM1-43 dye. Calcium influx and FM1-43 uptake were found to always be observed at lower nsPEF exposure parameters compared to PS externalization. These findings suggest that multiple, higher amplitude and longer pulse exposures may generate pores of larger diameter enabling lateral diffusion of PS; whereas, smaller pores induced by fewer, lower amplitude and short pulse width exposures may only allow extracellular calcium and FM1-43 uptake.  相似文献   

7.
Electroporation, in which electric pulses create transient pores in the cell membrane, is becoming an important technique for gene therapy. To enable entry of supercoiled DNA into cells, the pores should have sufficiently large radii (>10 nm), remain open long enough for the DNA chain to enter the cell (milliseconds), and should not cause membrane rupture. This study presents a model that can predict such macropores. The distinctive features of this model are the coupling of individual pores through membrane tension and the electrical force on the pores, which is applicable to pores of any size. The model is used to explore the process of pore creation and evolution and to determine the number and size of pores as a function of the pulse magnitude and duration. Next, our electroporation model is combined with a heuristic model of DNA uptake and used to predict the dependence of DNA uptake on pulsing parameters. Finally, the model is used to examine the mechanism of a two-pulse protocol, which was proposed specifically for gene delivery. The comparison between experimental results and the model suggests that this model is well-suited for the investigation of electroporation-mediated DNA delivery.  相似文献   

8.
In adherent and motile neutrophils NAD(P)H concentration, flavoprotein redox potential, and production of reactive oxygen species and nitric oxide, are all periodic and exhibit defined phase relationships to an underlying metabolic oscillation of approximately 20 s. Utilizing fluorescence microscopy, we have shown in real-time, on the single cell level, that the system is sensitive to externally applied periodically pulsed weak magnetic fields matched in frequency to the metabolic oscillation. Depending upon the phase relationship of the magnetic pulses to the metabolic oscillation, the magnetic pulses serve to either increase the amplitude of the NAD(P)H and flavoprotein oscillations, and the rate of production of reactive oxygen species and nitric oxide or, alternatively, collapse the metabolic oscillations and curtail production of reactive oxygen species and nitric oxide. Significantly, we demonstrate that the cells do not directly respond to the magnetic fields, but instead are sensitive to the electric fields which the pulsed magnetic fields induce. These weak electric fields likely tap into an endogenous signaling pathway involving calcium channels in the plasma membrane. We estimate that the threshold which induced electric fields must attain to influence cell metabolism is of the order of 10(-4) V/m.  相似文献   

9.
The use of electroporation for introducing macromolecules into intact cells of the actinomycete Frankia was investigated. Electropermeability was demonstrated by the uptake of dextran (70 kDa) molecules labeled with fluorescein isothiocyanate (FITC) inside Frankia cells. Upon pulsation with an exponentially decaying electric field, the cell membranes became permeable. Loading increased with initial pulsed electric field strength and capacitance. Increased loading efficiency was inversely related to INT (2-(p-iodophenyl-3-(p-nitrophenyl)-5- phenyltetrazolium chloride) reduction activity (respiring bacteria) of the cell population. The presence of CaCl2 in the electroporation and resealing buffer raised INT-reduction activity but K2SO4 decreased this activity. Resealing of electropores was confirmed by a decreasing FITC-dextran loading through the recovery period. The use of FITC-dextran molecules and INT-reduction assay are two new approaches for the study of permeabilization and cellular activity of electroporated bacteria.  相似文献   

10.
Molecular Dynamics Simulations of Lipid Membrane Electroporation   总被引:1,自引:0,他引:1  
The permeability of cell membranes can be transiently increased following the application of external electric fields. Theoretical approaches such as molecular modeling provide a significant insight into the processes affecting, at the molecular level, the integrity of lipid cell membranes when these are subject to voltage gradients under similar conditions as those used in experiments. This article reports on the progress made so far using such simulations to model membrane—lipid bilayer—electroporation. We first describe the methods devised to perform in silico experiments of membranes subject to nanosecond, megavolt-per-meter pulsed electric fields and of membranes subject to charge imbalance, mimicking therefore the application of low-voltage, long-duration pulses. We show then that, at the molecular level, the two types of pulses produce similar effects: provided the TM voltage these pulses create are higher than a certain threshold, hydrophilic pores stabilized by the membrane lipid headgroups form within the nanosecond time scale across the lipid core. Similarly, when the pulses are switched off, the pores collapse (close) within similar time scales. It is shown that for similar TM voltages applied, both methods induce similar electric field distributions within the membrane core. The cascade of events following the application of the pulses, and taking place at the membrane, is a direct consequence of such an electric field distribution.  相似文献   

11.
Electric pulses are known to affect the outer membrane and intracellular structures of tumour cells. By applying electrical pulses of 450 ns duration with electric field intensity of 8 kV/cm to HepG2 cells for 30 s, electric pulse‐induced changes in the integrity of the plasma membrane, apoptosis, viability and mitochondrial transmembrane potential were investigated. Results demonstrated that electric pulses induced cell apoptosis and necrosis accompanied with the decrease of mitochondrial transmembrane potential and the formation of pores in the membrane. The role of cytoskeleton in cellular response to electric pulses was investigated. We found that the apoptotic and necrosis percentages of cells in response to electric pulses decreased after cytoskeletal disruption. The electroporation of cell was not affected by cytoskeletal disruption. The results suggest that the disruption of actin skeleton is positive in protecting cells from killing by electric pulses, and the skeleton is not involved in the electroporation directly.  相似文献   

12.
Nanoelectropulse-induced phosphatidylserine translocation   总被引:5,自引:0,他引:5       下载免费PDF全文
Nanosecond, megavolt-per-meter, pulsed electric fields induce phosphatidylserine (PS) externalization, intracellular calcium redistribution, and apoptosis in Jurkat T-lymphoblasts, without causing immediately apparent physical damage to the cells. Intracellular calcium mobilization occurs within milliseconds of pulse exposure, and membrane phospholipid translocation is observed within minutes. Pulsed cells maintain cytoplasmic membrane integrity, blocking propidium iodide and Trypan blue. Indicators of apoptosis-caspase activation and loss of mitochondrial membrane potential-appear in nanoelectropulsed cells at later times. Although a theoretical framework has been established, specific mechanisms through which external nanosecond pulsed electric fields trigger intracellular responses in actively growing cells have not yet been experimentally characterized. This report focuses on the membrane phospholipid rearrangement that appears after ultrashort pulse exposure. We present evidence that the minimum field strength required for PS externalization in actively metabolizing Jurkat cells with 7-ns pulses produces transmembrane potentials associated with increased membrane conductance when pulse widths are microseconds rather than nanoseconds. We also show that nanoelectropulse trains delivered at repetition rates from 2 to 2000 Hz have similar effects, that nanoelectropulse-induced PS externalization does not require calcium in the external medium, and that the pulse regimens used in these experiments do not cause significant intra- or extracellular Joule heating.  相似文献   

13.
It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.  相似文献   

14.
By using a FURA2 ratio imaging method, the intracellular free calcium concentration was investigated in cultured mice neuroblastoma cells under the influence of an amplitude-modulated (AM) field (5 kHz sine wave AM 16 Hz sinusoidal 800 V/m and 80 V/m), as well as of electric field pulses (300-ms unipolar pulses of 1000 V/m and 800 V/m, 5 pulses during 10 s and 50 pulses during 100 s). An increase in free intracellular calcium was found in about 50% of cells after field application, whereas in control experiments only about 20% of the cells showed similar increases. However, this effect depended on the amount of UV irradiation used for excitation of FURA2 fluorescence. Experiments with 1/30 to former total illumination no longer demonstrated an increase in control cells or in cells treated with AM fields. The number of cells showing calcium increase after the application of pulsed fields was reduced significantly. Therefore, the UV light itself, applied as double flashes for the fluorescence measurement, activates the cellular calcium regulation. These findings offer a possible explanation for the low reproducibility of field effects found in different laboratories, in which investigations were performed with different equipment using different intensities of UV excitation. Bioelectromagnetics 18:595–597, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Abstract

This work describes the use of low-voltage (0.5 – 5 V) pulsed electric fields to prevent Pseudomonas aeruginosa biofilm development. Interdigitated electrodes (IDEs) with 29-μm spacing between 22-μm-wide electrodes, were used as a platform where the effect of localised, high-strength electric fields could be tested. Alternating current, square-wave pulses were applied to the IDEs in 1 sec intervals. A two-level, three-variable factorial design experiment was used to detect the effects of applied voltage, frequency, and pulse duty ratio (i.e. percentage of pulsing time over one cycle) on the inhibition of biofilm formation. The observations indicated that a pulse configuration of 1% duty ratio, 5 V, and 200 Hz frequency reduced the area of the electrodes covered by biofilm by 50%. In general, the application of low-duty ratio pulses had a positive effect on preventing biofouling. Comparatively, frequency and applied voltage were observed to have less influence on biofouling.  相似文献   

16.
Nanosecond, megavolt-per-meter pulses--higher power but lower total energy than the electroporative pulses used to introduce normally excluded material into biological cells--produce large intracellular electric fields without destructively charging the plasma membrane. Nanoelectropulse perturbation of mammalian cells causes translocation of phosphatidylserine (PS) to the outer face of the cell, intracellular calcium release, and in some cell types a subsequent progression to apoptosis. Experimental observations and molecular dynamics (MD) simulations of membranes in pulsed electric fields presented here support the hypothesis that nanoelectropulse-induced PS externalization is driven by the electric potential that appears across the lipid bilayer during a pulse and is facilitated by the poration of the membrane that occurs even during pulses as brief as 3 ns. MD simulations of phospholipid bilayers in supraphysiological electric fields show a tight association between PS externalization and membrane pore formation on a nanosecond time scale that is consistent with experimental evidence for electropermeabilization and anode-directed PS translocation after nanosecond electric pulse exposure, suggesting a molecular mechanism for nanoelectroporation and nanosecond PS externalization: electrophoretic migration of the negatively charged PS head group along the surface of nanometer-diameter electropores initiated by field-driven alignment of water dipoles at the membrane interface.  相似文献   

17.
To investigate the regulatory interactions of amino acid transport and incorporation, we determined the effects of dipeptides on amino acid uptake by bacteria in an estuary and a freshwater lake. Dipeptides noncompetitively inhibited net transport and incorporation of amino acids into macromolecules but had no effect on the ratio of respiration to incorporation. Nearly maximum inhibition occurred at peptide concentrations of <10 nM. In contrast, the initial uptake rate of glycyl-[14C]phenylalanine was not affected by glycine or phenylalanine. Net amino acid transport appeared to be inhibited by the increased flux into the intracellular pools, whereas the incorporation of labeled monomers into macromolecules was isotopically diluted by the unlabeled amino acids resulting from intracellular hydrolysis of the dipeptide. Chloramphenicol, sodium azide, and dinitrophenol all inhibited the initial uptake rate of leucine and phenylalanine. These results suggest that in aquatic environments amino acids are taken up by active transport which is coupled closely to protein synthesis.  相似文献   

18.
The effects of pulsed electric fields on cell membranes were investigated. In vitro exposure of mouse splenocytes to a single high-voltage pulse resulted in an increase in membrane permeability that was dependent on both the electric field strength and the pulse duration. Exposure to a 2 μs, 3.0 kV/cm pulse resulted in the induction of a 1.26 V transmembrane potential, and elicited a 50% loss of intracellular K+. These results are in agreement with previous studies of the effects of pulsed electric fields on erythrocytes and microorganisms. The effect of pulsed electric fields on the functional integrity of lymphocytes was i vestigated by measuring [3H]thymidine incorporation by cells cultured in the presence and absence of various mitogens following exposure to an electrical pulse. No statistically significant effects on the response of mouse spleen lymphocytes to concanavalin A, phytohemagglutinin or lipopolysaccharide were observed following exposure to 2 μs electric pulses at amplitudes of up to 3.5 kV/cm. Exposure to a single 10 μs pulse of 2.4–3.5 kV/cm produced a statistically significant reduction in the response of lymphocytes to lipopolysaccharide stimulation that was attributed to cell death.  相似文献   

19.
This study demonstrates alteration of cell surface, leading to enhanced adsorption of macromolecules (bovine serum albumin (BSA), dextran, and DNA), after the exposure of cells to unipolar pulsed low electric fields (LEF). Modification of the adsorptive properties of the cell membrane also stems from the observation of LEF-induced cell-cell aggregation. Analysis of the adsorption isotherms of BSA-fluorescein isothiocyanate (FITC) to the surface of COS 5-7 cells reveals that the stimulated adsorption can be attributed to LEF-induced increase in the capacity of both specific and nonspecific binding. The enhanced adsorption was consequently followed by increased uptake. At 20 V/cm the maximal binding and subsequent uptake of BSA-FITC attached to specific sites are 6.5- and 7.4-fold higher than in controls, respectively. The nonspecific LEF-induced binding and uptake of BSA are 34- and 5.2-fold higher than in controls. LEF-enhanced adsorption is a temperature-independent process, whereas LEF-induced uptake is a temperature-dependent one that is abolished at 4 degrees C. The stimulation of adsorption and uptake is reversible, revealing similar decay kinetics at room temperature. It is suggested that electrophoretic segregation of charged components in the outer leaflet of the cell membrane is responsible for both enhanced adsorption and stimulated uptake via changes of the membrane elastic properties that enhance budding and fission processes.  相似文献   

20.
HgCl(2) had both stimulatory and inhibitory effects on [(3)H]2-deoxyglucose (DG) uptake in Xenopus laevis oocytes. The Hg dose response was complex, with 0.1-10 microM Hg increasing total DG uptake, 30-50 microM Hg inhibiting, and concentrations >100 microM increasing uptake. Analyses of the effects of Hg on DG transport kinetics and cell membrane permeability indicated that low concentrations of Hg stimulated mediated uptake, intermediate concentrations inhibited mediated uptake, but high Hg concentrations increased non-mediated uptake. 10 microM Hg increased the apparent V(max) for DG uptake, but caused little or no change in apparent K(m). Phenylarsine oxide prevented the increase in DG uptake by 10 microM Hg, suggesting that the increase was due to transporter recruitment. Microinjecting low doses of HgCl(2) into the cell increased mediated DG uptake. Higher intracellular doses of Hg increased both mediated and non-mediated DG uptake. Both insulin and Hg cause cell swelling in isotonic media and, for insulin, this swelling has been linked to the mechanism of hormone action. Osmotically swelling Xenopus oocytes stimulated DG transport 2-5-fold and this increase was due to an increased apparent V(max). Exposing cells to 10 microM Hg or 140 nM insulin both increased cellular water content by 18% and increased hexose transport 2-4-fold. These data indicate that low concentrations of Hg and insulin affect hexose transport in a similar manner and that for both an increase cellular water content could be an early event in signaling the increase in hexose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号