首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seasonal evaluation of total soluble protein fractions extracted from cortical parenchyma cells of mulberry (Morus bombycis Koidz.) tree identified a predominant 18 kDa protein that was directly correlated to periods of cold acclimation. The 18 kDa protein, designated as WAP18 (winter accumulating 18 kDa proteins) increased from September to December and then gradually decreased until June. The maximum levels of WAP18 were detected in mid‐winter, which corresponds to the maximum freeze tolerance in cortical parenchyma cells of mulberry tree. Two‐dimensional gel electrophoresis confirmed that WAP18 consists of at least three proteins that range between an isoelectric point of 5.0 and 6.0. All three proteins reacted with anti‐WAP18 antibodies, thereby suggesting that they represent individual isoforms. Furthermore, N‐terminal amino acid sequence analysis demonstrated that all three proteins contain high sequence similarity to each other and high homology to pathogenesis‐related (PR) ?10/Bet v 1 protein families. The purified WAP18 exhibited in vitro cryoprotective activity for the freeze labile l ‐lactate dehydrogenase (LDH) enzyme. These results suggest that WAP18 may function in the freezing tolerance mechanism of cortical parenchyma cells of mulberry tree during winter.  相似文献   

3.
S. Fujikawa  K. Takabe 《Protoplasma》1996,190(3-4):189-203
Summary Cortical parenchyma cells of mulberry (Morus bombycis Koidz. cv. Goroji) become extremely cold hardy in winter and can tolerate equilibrium freezing below –30 °C and subsequent immersion into liquid nitrogen. We show in this ultrastructural study that, in these extremely cold hardy cortical parenchyma cells of mulberry collected in winter, initiation of freezing at –5 °C resulted in the formation of multiplex lamellae (MPL) that completely covered the area beneath the plasma membrane. The MPL were produced by fusion of pre-existing vesicular endoplasmic reticulum (ER), via a reticular ER network. The completed MPL were composed of a parallel array of sheet-like ER cisternae. This structural reorganization of the ER was completed within 10 min upon freezing at –5 °C and was quickly reversed upon thawing. The same structural reorganization of the ER was produced by osmotic dehydration of the cortical tissues with a 2.7 osmol sorbitol solution at 20 °C. Thus, the structural reorganization of the ER upon freezing was, in fact, produced by dehydration. In winter samples, the formation of MPL with the initiation of freezing completely inhibited close apposition of membranes upon deep freezing that has been reported to be a cause of freezing injury via the production of ultrastructural changes in the plasma membrane. Similar but more or less incomplete MPL were produced by freezing or osmotic dehydration in cortical parenchyma cells collected in spring and autumn, and these MPL partly inhibited close apposition of membranes. MPL were not produced in the cells of mulberry collected in summer and close apposition of membranes occurred upon deep freezing. We speculate that the formation of MPL with the initiation of freezing might play a specific role in inhibiting the close apposition of membranes due to the specific nature of the cisternal membranes and might, consequently, be responsible for the high freezing tolerance of winter cells.  相似文献   

4.
The freezing behavior of xylem ray parenchyma cells in several boreal hardwood species, namely, Betula platyphylla, Populus canadensis, P. sieboldii, and Salix sachalinensis, was examined by differential thermal analysis (DTA), cryo-scanning electron microscopy (Cryo-SEM), and freeze-fracture replica electron microscopy. Although DTA profiles of samples harvested in summer and in winter suggested that the xylem ray parenchyma cells in all four species responded to freezing stress by extracellular freezing, Cryo-SEM showed clearly that the xylem ray parenchyma cells in all these species responded to freezing stress by shallow supercooling in summer and by extracellular freezing in winter. It is suggested that DTA failed to reveal the true freezing behavior of xylem ray parenchyma cells because of an overlap of temperature ranges between the high-temperature exotherm and the low-temperature exotherm and/or because of the limited extent of the LTE. The seasonal changes in freezing behavior of xylem ray parenchyma cells in all these boreal species, which are results of seasonal cold acclimation, support the hypothesis that a gradual shift of freezing behavior in xylem ray parenchyma cells from shallow supercooling in hardwood species that grow in tropical zones to extracellular freezing in hardwood species that grow in cold areas might be a result of the evolutionary adaptation of hardwood species to cold climates. Copyright 1999 Academic Press.  相似文献   

5.
6.
Antifreeze protein accumulation in freezing-tolerant cereals   总被引:15,自引:0,他引:15  
Freezing-tolerant plants withstand extracellular ice formation at subzero temperatures. Previous studies have shown that winter rye ( Secale cereale L.) accumulates proteins in the leaf apoplast during cold acclimation that have antifreeze properties and are similar to pathogenesis-related proteins. To determine whether the accumulation of these antifreeze proteins is common among herbaceous plants, we assayed antifreeze activity and total protein content in leaf apoplastic extracts from a number of species grown at low temperature, including both monocotyledons (winter and spring rye, winter and spring wheat, winter barley, spring oats, maize) and dicotyledons (spinach, winter and spring oilseed rape [canola], kale, tobacco). Apoplastic polypeptides were also separated by SDS-PAGE and immunoblotted to determine whether plants generally respond to low temperature by accumulating pathogenesis-related proteins. Our results showed that significant levels of antifreeze activity were present only in the apoplast of freezing-tolerant monocotyledons after cold acclimation at 5/20C. Moreover, only a closely related group of plants, rye, wheat and barley, accumulated antifreeze proteins similar to pathogenesis-related proteins during cold acclimation. The results indicate that the accumulation of antifreeze proteins is a specific response that may be important in the freezing tolerance of some plants, rather than a general response of all plants to low temperature stress.  相似文献   

7.
Seasonal variations in freezing tolerance, water content, water and osmotic potential, and levels of soluble sugars of leaves of field-grown Valencia orange (Citrus sinensis) trees were studied to determine the ability of citrus trees to cold acclimate under natural conditions. Controlled environmental studies of young potted citrus trees, spinach (Spinacia pleracea), and petunia (Petunia hybrids) were carried out to study the water relations during cold acclimation under less variable conditions. During the coolest weeks of the winter, leaf water content and osmotic potential of field-grown trees decreased about 20 to 25%, while soluble sugars increased by 100%. At the same time, freezing tolerance increased from lethal temperature for 50% (LT50) of −2.8 to −3.8°C. In contrast, citrus leaves cold acclimated at a constant 10°C in growth chambers were freezing tolerant to about −6°C. The calculated freezing induced cellular dehydration at the LT50 remained relatively constant for field-grown leaves throughout the year, but increased for leaves of plants cold acclimated at 10°C in a controlled environment. Spinach leaves cold acclimated at 5°C tolerated increased cellular dehydration compared to nonacclimated leaves. Cold acclimated petunia leaves increased in freezing tolerance by decreasing osmotic potential, but had no capacity to change cellular dehydration sensitivity. The result suggest that two cold acclimation mechanisms are involved in both citrus and spinach leaves and only one in petunia leaves. The common mechanism in all three species tested was a minor increase in tolerance (about −1°C) resulting from low temperature induced osmotic adjustment, and the second in citrus and spinach was a noncolligative mechanism that increased the cellular resistance to freeze hydration.  相似文献   

8.
9.
Woody plants in the temperate and boreal zone undergo annual cycle of growth and dormancy under seasonal changes. Growth cessation and dormancy induction in autumn are prerequisites for the development of substantial cold hardiness in winter. During evolution, woody plants have developed different ecotypes that are closely adapted to the local climatic conditions. In this study, we employed distinct photoperiodic ecotypes of silver birch (Betula pendula Roth) to elucidate differences in these adaptive responses under seasonal changes. In all ecotypes, short day photoperiod (SD) initiated growth cessation and dormancy development, and induced cold acclimation. Subsequent low temperature (LT) exposure significantly enhanced freezing tolerance but removed bud dormancy. Our results suggested that dormancy and freezing tolerance might partially overlap under SD, but these two processes were regulated by different mechanisms and pathways under LT. Endogenous abscisic acid (ABA) levels were also altered under seasonal changes; the ABA level was low during the growing season, then increased in autumn, and decreased in winter. Compared with the southern ecotype, the northern ecotype was more responsive to seasonal changes, resulting in earlier growth cessation, cold acclimation and dormancy development in autumn, higher freezing tolerance and faster dormancy release in winter, and earlier bud flush and growth initiation in spring. In addition, although there was no significant ecotypic difference in ABA level during growing season, the rates and degrees of ABA alterations were different between the ecotypes in autumn and winter, and could be related to ecotypic differences in dormancy and freezing tolerance.  相似文献   

10.
11.
12.
Time-courses of the development of freezing tolerance and the expression of a cold-responsive gene wlt10 were monitored during cold acclimation in wheat (Triticum aestivum L.). Bioassay showed that cold acclimation conferred much higher freezing tolerance on a winter cultivar than a spring cultivar. Northern blot analysis showed that the expression of wlt10 encoding a novel wheat member of a cereal-specific LT-COR protein family was specifically induced by low temperature. A freezing-tolerant winter cultivar accumulated the mRNA more rapidly and for a longer period than a susceptible spring cultivar. The increase in the amount of mRNA was temporary but the peak occurred at the time when the maximum level of freezing tolerance was attained. The mRNA accumulated more in the leaves than in the roots, and different light/dark regimes modulated the level of mRNA accumulation. Genomic Southern blot analyses using the nulli-tetrasomic series showed that the wlt10 homologues were located on the homologous group 2 chromosomes.  相似文献   

13.
Antifreeze proteins (AFPs) were obtained from intercellular spaces of spruce needles Picea abies (L.) Karst. and Picea pungens Engelm. by vacuum infiltration with ascorbic acid, followed by centrifugation to recover the infiltrate. As shown by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), apoplastic proteins are accumulated in these spruce species as a group of 5–9 polypeptide bands. These proteins have a molecular mass of 7–80 kDa. The spruce AFPs have the ability to modify the growth of ice and thermal hysteresis, TH, caused by these AFPs was close to 2.0 °C at a concentration of 400 μg/ml. The antifreeze activity of proteins from these winter-hardy coniferous species showed a positive correlation with the concentration of proteins after cold acclimation of needle tissues. Apoplastic proteins from winter spruce needles exhibited antifreeze activity, whereas no such activity was observed in extracts from summer needles. When we examined the possible role of spruce AFPs in cryoprotection, we found that lactate dehydrogenase, LDH, activity was higher after freezing in the presence of AFPs compared with bovine serum albumin. Amino-terminal sequence comparisons indicated that a 27-kDa protein from both P. abies and P. pungens was similar to some pathogenesis-related proteins namely chitinases, also from conifer species. These results show that spruces produce AFPs that are secreted into the apoplast of needles. The accumulation of AFPs in extracellular spaces caused by seasonal cold acclimation during winter indicates that these proteins may play a role in the acquisition of freezing tolerance of needle cells in coniferous species.  相似文献   

14.
Molecular control of cold acclimation in trees   总被引:8,自引:0,他引:8  
Frost tolerance is an acquired characteristic of plants that is induced in response to environmental cues preceding the onset of freezing temperatures and activation of a cold acclimation program. In addition to transient acclimation to low non-freezing temperatures and enhancing survival to short frost episodes during the growth season, perennial woody plants need additionally to survive the cold winter months. Trees have evolved a complex dynamic process controlling the development of dormancy and freezing tolerance that secures accurate initiation and termination of the overwintering process. Although the phenology of overwintering has been known for decades, only recently has there been progress in elucidating the molecular mechanisms of dormancy and freezing tolerance development in perennial plants. Current molecular and genomic studies indicate that herbaceous annual and woody perennial plants share similar cold acclimation mechanisms. Both the signal processes controlling cold acclimation and the cold-regulated target genes appear to be shared by herbaceous and woody plants. However, the dormancy development during overwintering brings new players in the molecular control of seasonal cold acclimation of woody perennials.  相似文献   

15.
Cold injury is frequently seen in the commercially important shrub Hydrangea macrophylla but not in Hydrangea paniculata. Cold acclimation and deacclimation and associated physiological adaptations were investigated from late September 2006 to early May 2007 in stems of field-grown H. macrophylla ssp. macrophylla (Thunb.) Ser. cv. Blaumeise and H. paniculata Sieb. cv. Kyushu. Acclimation and deacclimation appeared approximately synchronized in the two species, but they differed significantly in levels of mid-winter cold hardiness, rates of acclimation and deacclimation and physiological traits conferring tolerance to freezing conditions. Accumulation patterns of sucrose and raffinose in stems paralleled fluctuations in cold hardiness in both species, but H. macrophylla additionally accumulated glucose and fructose during winter, indicating species-specific differences in carbohydrate metabolism. Protein profiles differed between H. macrophylla and H. paniculata, but distinct seasonal patterns associated with winter acclimation were observed in both species. In H. paniculata concurrent increases in xylem sap abscisic acid (ABA) concentrations ([ABA](xylem)) and freezing tolerance suggests an involvement of ABA in cold acclimation. In contrast, ABA from the root system was seemingly not involved in cold acclimation in H. macrophylla, suggesting that species-specific differences in cold hardiness may be related to differences in [ABA](xylem). In both species a significant increase in stem freezing tolerance appeared long after growth ceased, suggesting that cold acclimation is more regulated by temperature than by photoperiod.  相似文献   

16.
The freezing tolerance or cold acclimation of plants is enhanced over a period of time by temperatures below 10°C and by a short photoperiod in certain species of trees and grasses. During this process, freezing tolerance increases 2–8°C in spring annuals, 10–30°C in winter annuals, and 20–200°C in tree species. Gene upregulation and downregulation have been demonstrated to be involved in response to environmental cues such as low temperature. Evidence suggests ABA can substitute for the low temperature stimulus, provided there is also an adequate supply of sugars. Evidence also suggests there may be ABA-dependent and ABA-independent pathways involved in the acclimation process. This review summarizes the role of ABA in cold acclimation from both a historical and recent perspective. It is concluded that it is highly unlikely that ABA regulates all the genes associated with cold acclimation; however, it definitely regulates many of the genes associated with an increase in freezing tolerance.  相似文献   

17.
18.
In many woody plants a short photoperiod triggers the onset of cold acclimation, but the nature of this process has remained obscure. We aimed to establish which physiological and genetic factors have a role in short-day-induced acclimation by comparing two types of birch, Betula pubescens Ehrh. and B. pubescens f. hibernifolia Ulv., the latter being unable to increase its abscisic acid (ABA) levels. In the wild type, short-day or natural autumn conditions in the field appeared to elevate the ABA levels before acclimation, which was accompanied by tissue desiccation, osmotic adjustments and accumulation of Group 2 LEA proteins [responsive to ABA (RAB) 16-like; 24, 30 and 33 kDa] and Group 4 LEA proteins [late embryogenesis abundant (LEA) 14-like; 19 kDa]. Under similar conditions the ABA-deficient birch showed reduced water loss, defective osmoregulation, absence of inducible Group 2 LEA proteins, and delayed or reduced tolerance to freezing. In contrast, both birch genotypes showed similar seasonal production patterns of Group 4 LEA proteins. Our results demonstrate that onset of cold acclimation in birch is based on multiple mechanisms, including molecular pathways that are typical of stress responses. ABA may be important for the accurate timing of cold acclimation in trees that are sensitive to photoperiod.  相似文献   

19.
During cold acclimation, winter rye ( Secale cereale L.) plants develop the ability to tolerate freezing temperatures by forming ice in intercellular spaces and xylem vessels. In this study, proteins were extracted from the apoplast of rye leaves to determine their role in controlling extracellular ice formation. Several polypeptides in the 15 to 32 kDa range accumulated in the leaf apoplast during cold acclimation at 5°C and decreased during deacclimation at 20°C. A second group of polypeptides (63, 65 and 68 kDa) appeared only when the leaves were maximally frost tolerant. Ice nucleation activity, as well as the previously reported antifreeze activity, was higher in apoplastic extracts from cold-acclimated than from nonacclimated rye leaves. These results indicate that apoplastic proteins exert a direct influence on the growth of ice. In addition, freezing injury was greater in extracted cold-acclimated leaves than in unextracted cold-acclimated leaves, which suggests that the proteins present in the apoplast are an important component of the mechanism by which winter rye leaves tolerate ice formation  相似文献   

20.
Off-host stages of temperate parasites must cope with low temperatures. Cold tolerance is often highest in winter, as a result of diapause and cold acclimation, and low during the active summer stages. In some blood-feeding ectoparasites, offspring provisioning determines cold tolerance through all the non-feeding, off-host stages. Large size increases survival in the cold, but so far seasonal variation in within-female offspring size has not been associated with offspring cold tolerance. The deer ked (Lipoptena cervi) reproduces on cervids from autumn to spring. Newborn pupae drop off the host, facing frosts without any acclimation. We examined cold tolerance through 4 seasons and from birth to adulthood by means of short- and long-term frost exposure. We expected females to produce more tolerant offspring in winter than in spring. Large spring pupae survived prolonged frosts better than did small winter pupae. Thus more tolerant offspring were not produced when the temperature outside the host is at its lowest. Unexpectedly, the freezing points were -20 °C or below all year round. We showed that high cold tolerance is possible without acclimation regardless of life stage, which presumably correlates with other survival characteristics, such as the starvation resistance of free-living ectoparasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号