首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene encoding the beta-amylase of Bacillus circulans was isolated from a lambda library and sequenced. The structural gene consists of a 1725 bp open reading frame encoding a polypeptide with a predicted molecular wt of 62830 Daltons. Two active forms of the enzyme were found when the gene was expressed in E. coli. The larger 60 kD form was approximately 3 kD larger than the mature beta-amylase secreted from B. circulans, suggesting that processing of this protein is different between the two species. The smaller 49 kD form is also present at a low level in B. circulans and may result from proteolytic cleavage. The enzyme has a temperature optimum of 50 degrees C. Two other genes, one encoding an alpha-amylase and one a pullulanase, were also isolated from the lambda library.  相似文献   

2.
A gene of β-galactosidase from Bacillus circulans ATCC 31382 was cloned and sequenced on the basis of N-terminal and internal peptide sequences isolated from a commercial enzyme preparation, Biolacta®. Using the cloned gene, recombinant β-galactosidase and its deletion mutants were overexpressed as His-tagged proteins in Escherichia coli cells and the enzymes expressed were characterized.  相似文献   

3.
已分离了编码牛脑液泡型质子泵的70kD亚基的cDNA,利用聚合酶链反应(PCR)扩增了70kD亚基的编码片段,同时直接从牛脑cDNA库中得到了33kD亚基的编码片段.分别将相应片段连接到PET载体上完成70kD和33kD亚基基因在大肠杆菌中的表达.SDS聚丙烯酰胺凝胶电泳和蛋白质印迹分析表明70kD和33kD亚基基因均得到明显表达.  相似文献   

4.
A DNA segment encoding a signal peptide from yeast invertase was fused in frame to. hglH. gene encoding 87-kD- β-1,3-glucanase from Bacillus circulans IAM1165 and was expressed in the yeast Saccharomyces cerevisiae under the control of the GAL1 gene promoter. Yeast cells contain.ng this fused gene produced active β -1,3-glucanase in the medium after a long period of incu ation at low temperature. The enzyme produced by yeast was heterogeneous in size, and larger than the enzyme produced by Escherichia coli.  相似文献   

5.
The presence of multiple types of β-galactosidases in a commercial enzyme preparation from Bacillus circulans ATCC 31382 and differences in their transgalactosylation activity were investigated. Four β-galactosidases, β-Gal-A, β-Gal-B, β-Gal-C, and β-Gal-D, which were immunologically homologous, were isolated and characterized. The N-terminal amino acid sequences of all of the enzymes were identical and biochemical characteristics were similar, except for galactooligosaccharide production. β-Gal-B, β-Gal-C, and β-Gal-D produced mainly tri- and tetra saccharides at maximum yields of 20–30 and 9–12%, while β-Gal-A produced trisaccharide with 7% with 5% lactose as substrate. The Lineweaver-Burk plots for all of the enzymes, except for β-Gal-A, showed biphasic behavior. β-Gal-A was truncated to yield multiple β-galactosidases by treatment with protease isolated from the culture broth of B. circulans. Treatment of β-Gal-A with trypsin yielded an active 91-kDa protein composed of 21-kDa and 70-kDa proteins with characteristics similar to those for β-Gal-D.  相似文献   

6.
Summary The -cyclodextrin glycosyltransferase (-CGTase) gene was isolated from a -library prepared from Bacillus circulans strain no. 8. It was subcloned into plasmid pTZ and expressed by its endogenous regulatory sequences in Escherichia coli JM 103. The structural gene was sequenced and showed an open reading frame for a polypeptide of 718 amino acid residues. The recombinant -CGTase had the same enzymatic properties as the extracellular CGTase (684 amino acid residues, corresponding to a mol. wt. of 74416) produced by B. circulans strain no. 8. The amino acid sequence showed the highest homology (74.6% identical amino acids) with the CGTase of B. circulans strain F-2, which had been erroneously described as an amylase. The homology with the enzyme from the alkalophilic Bacillus sp. strain no. 1011 was 71.4%. The amino acid sequence derived will be used for elucidating the three-dimensional structure of the enzyme. Offprint requests to: H. Bender  相似文献   

7.
Bacillus circulans WL-12, a yeast and fungal cell wall lytic bacterium, secretes a variety of polysaccharide degrading enzymes into the culture medium. When β-1,3-glucanase was induced with pachyman, a β-1,3-glucose polymer obtained from the tree fungus Poria cocus Wolf, six distinct active molecules of the enzyme with different molecular weights were detected in the culture supernatant of this bacterium. Molecular cloning of one of the β,3-gIucanase genes into E. coli was achieved by transforming E. coli HB101 cells with recombinant plasmids composed of chromosomal DNA fragments prepared from B. circulans WL-12 and the plasmid vector pUC 19. A recombinant plasmid containing 4.4 kb of inserted DNA in the Pst I site of pUC 19, designated as pNT003, conferred the ability to degrade pachyman on E. coli cells. The presence of pNT003 was harmful for E. coli cells and caused cell lysis, especially at higher temperatures of cultivation. β,3-Glucanase activity detected in E. coli was mainly recovered in the periplasmic fraction when cell lysis did not occur. SDS-PAGE analysis revealed that the periplasmic fraction contained four active molecules of β-1,3-glucanase which corresponded to four of the six active molecules produced by B. circulans WL-12.  相似文献   

8.
An enzyme that has both β-1,4-glucanase and chitosanase activities was found in the culture medium of the soil bacterium Lysobacter sp. IB-9374, a high lysyl endopeptidase-producing strain. The enzyme was purified to homogeneity from the culture filtrate using five purification steps and designated Cel8A. The purified Cel8A had a molecular mass of 41 kDa, as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. A pH optimum of 5.0 was found for the β-1,4-glucanase activity, and pH optima of 5.0 and 7.0 were found for the chitosanase activity. Nucleotide sequencing of the Cel8A gene yielded a deduced amino acid sequence that comprises a 33-amino acid, N-terminal signal peptide and a mature enzyme consisting of a 381-residue polypeptide with a predicted molecular mass of 41,241 Da. The amino acid sequence of the Cel8A, which contains the catalytic module of glycosyl hydrolase family 8, is homologous to β-1,3-1,4-D-glucanase from Bacillus circulans WL-12 and endoglucanase N-257 from B. circulans KSM-N257.  相似文献   

9.
Summary The cyclomaltodextrin glucanotransferase (CGTase, E.C. 2.4.1.19) gene from an alkalophilic Bacillus circulans var. alkalophilus ATCC21783 was cloned into Escherichia coli and B. subtilis. When cloned from E. coli to B. subtilis, the entire insert containing the CGTase gene was, depending on the plasmid construction, either unstable or the recombinant B. subtilis did not secrete the enzyme in significant amounts. To achieve efficient enzyme production in B. subtilis, the gene was placed under the control of the B. amyloliquefaciens -amylase promoter. In one of the constructions, both the promoter and the signal sequence of the gene were replaced with those of B. amyloliquefaciens, whereas in another construction only the promoter area was exchanged. The recombinant B. subtilis clones transformed with these plasmid constructions secreted CGTase into the culture medium 14 times as much as did the parental strain in shake flask cultures. In fermentor cultures in an industrially feasible medium the enzyme production was substantially higher, yielding 1.2 g/l of CGTase, which is about 33 times the amount of the enzyme produced by the parental strain in corresponding fermentations. Both of the plasmid constructions were stable when grown over 50 generations without antibiotic selection.  相似文献   

10.
The β-amylases of ungerminated barley (Hordeum distichum L. cv. Emir) were characterized by two-dimensional immunoelectrophoretic techniques in order to elucidate the structure and physiological importance of the latent β-amylase present in cereal grains. Two water-soluble forms with partial immunochemical identity were detected. One of the enzyme forms was found to consist of aggregates between β-amylase and an immunochemically distinct non-active protein. Both β-amylase and the protein could be released from the aggregates with β-mercaptoethanol and, to some extent, with papain. β-Mercaptoethanol increased the extractability of β-amylase and of the non-active protein. The aggregated form of β-amylase was found to predominate in extracts made in the presence of papain. Possible functions of the non-enzymatic protein in formation of latent β-amylase is discussed.  相似文献   

11.
A cycloisomaltooligosaccharide (CI; cyclodextran) production system was developed using a Bacillus subtilis expression system for the cycloisomaltooligosaccharide glucanotransferase (CITase) gene. The CITase gene of Bacillus circulans T-3040, along with the α-amylase promoter (PamyQ) and amyQ signal sequence of Bacillus amyloliquefaciens, was cloned into the Bacillus expression vector pUB110 and subsequently expressed in B. subtilis strain 168 and its alkaline (aprE) and neutral (nprE) protease-deficient strains. The recombinant CITase produced by the protease-deficient strains reached 1 U/mL in the culture supernatant within 48 h of cultivation, which was approximately 7.5 times more than that produced by the industrial CITase-producing strain B. circulans G22-10 derived from B. circulans T-3040. When aprE- and nprE-deficient B. subtilis 168 harboring the CITase gene was cultured with 10% dextran 40 for 48 h, 17% of the dextran in the culture was converted to CIs (CI-7 to CI-12), which was approximately three times more than that converted by B. circulans G22-10 under the same dextran concentration. The B. subtilis host–vector system enabled us to produce CIs by direct fermentation of dextran along with high CITase production, which was not possible in B. circulans G22-10 due to growth inhibition by dextran at high concentrations and limited production of CITase.  相似文献   

12.
A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia, and a combination of α-1,3-glucanase and chitinase I, which were isolated from the filtrate, brings about the protoplast-forming activity.

The gene of α-1,3-glucanase was cloned from B. circulans KA-304. It consists of 3,879 nucleotides, which encodes 1,293 amino acids including a putative signal peptide (31 amino acid residues), and the molecular weight of α-1,3-glucanase without the putative signal peptide was calculated to be 132,184. The deduced amino acid sequence of α-1,3-glucanase of B. circulans KA-304 showed approximately 80% similarity to that of mutanase (α-1,3-glucanase) of Bacillus sp. RM1, but no significant similarity to those of fungal mutanases.

The recombinant α-1,3-glucanase was expressed in Escherichia coli Rosetta-gami B (DE 3), and significant α-1,3-glucanase activity was detected in the cell-free extract of the organism treated with isopropyl-β-D-thiogalactopyranoside. The recombinant α-1,3-glucanase showed protoplast-forming activity when the enzyme was combined with chitinase I.  相似文献   

13.
A chitosanase was purified from the culture fluid of the chitino- and chitosanolytic bacterium Burkholderia gladioli strain CHB101. The purified enzyme (chitosanase A) had a molecular mass of 28 kDa, and catalyzed the endo-type cleavage of chitosans having a low degree of acetylation (0–30%). The enzyme hydrolyzed glucosamine oligomers larger than a pentamer, but did not exhibit any activity toward N-acetyl-glucosamine oligomers and colloidal chitin. The gene coding for chitosanase A (csnA) was isolated and its nucleotide sequence determined. B. gladioli csnA has an ORF encoding a polypeptide of 355 amino acid residues. Analysis of the N-terminal amino acid sequence of the purified chitosanase A and comparison with that deduced from the csnA ORF suggests post-translational processing of a putative signal peptide and a possible substrate-binding domain. The deduced amino acid sequence corresponding to the mature protein showed 80% similarity to the sequences reported from Bacillus circulans strain MH-K1 and Bacillus ehimensis strain EAG1, which belong to family 46 glycosyl hydrolases. Received: 30 July 1999 / Revised revision: 17 February 2000 / Accepted: 25 February 2000  相似文献   

14.
A gene encoding a starch-hydrolyzing enzyme was isolated from a marine metagenomic library and overexpressed in Escherichia coli. The enzyme, designated AmyP, shows very low similarity to full-length sequences of known α-amylases, although a catalytic domain correlated with the α-amylase superfamily was identified. Based on the range of substrate hydrolysis and the product profile, the protein was clearly defined as a saccharifying-type α-amylase. Sequence comparison indicated that AmyP was related to four putative glycosidases previously identified only in bacterial genome sequences. They were all from marine bacteria and formed a new subfamily of glycoside hydrolase GH13. Moreover, this subfamily was closely related to the probable genuine bacterial α-amylases (GH13_19). The results suggested that the subfamily may be an independent clade of ancestral marine bacterial α-amylases.  相似文献   

15.
Abstract The gene coding for the thermostable α-amylase Bacillus licheniformis has been isolated from a direct shotgun in Escherichia coli using the bacteriophage lambda as a vector. The fragment containing the α-amylase gene has been sub-cloned in pBR322 and its restriction map determined. The α-amylase produced by the E. coli clones retained the thermostability of the B. licheniformis enzyme. Expression and properties of the gene product in E. coli and Bacillus subtilis have been examined.  相似文献   

16.
17.
The gene for a novel glucanotransferase, isocyclomaltooligosaccharide glucanotransferase (IgtY), involved in the synthesis of a cyclomaltopentaose cyclized by an α-1,6-linkage [ICG5; cyclo-{→6)-α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→}] from starch, was cloned from the genome of B. circulans AM7. The IgtY gene, designated igtY, consisted of 2,985 bp encoding a signal peptide of 35 amino acids and a mature protein of 960 amino acids with a calculated molecular mass of 102,071 Da. The deduced amino-acid sequence showed similarities to 6-α-maltosyltransferase, α-amylase, and cyclomaltodextrin glucanotransferase. The four conserved regions common in the α-amylase family enzymes were also found in this enzyme, indicating that this enzyme should be assigned to this family. The DNA sequence of 8,325-bp analyzed in this study contained two open reading frames (ORFs) downstream of igtY. The first ORF, designated igtZ, formed a gene cluster, igtYZ. The amino-acid sequence deduced from igtZ exhibited no similarity to any proteins with known or unknown functions. IgtZ was expressed in Escherichia coli, and the enzyme was purified. The enzyme acted on maltooligosaccharides that have a degree of polymerization (DP) of 4 or more, amylose, and soluble starch to produce glucose and maltooligosaccharides up to DP5 by a hydrolysis reaction. The enzyme (IgtZ), which has a novel amino-acid sequence, should be assigned to α-amylase. It is notable that both IgtY and IgtZ have a tandem sequence similar to a carbohydrate-binding module belonging to a family 25. These two enzymes jointly acted on raw starch, and efficiently generated ICG5.  相似文献   

18.
Bacillus circulans strain YUS-2 was isolated as the strongest antioxidant-producer in fermentation of sesame oil cake (SOC, defatted residue yielded from sesame seed oil production). Two major strong antioxidants from fermented SOC were purified and identified as known sesaminol triglucoside and sesaminol diglucoside, however, our results demonstrated that the fermentation process with B. circulans YUS-2 was highly effective to gain the extraction efficiency of the sesaminol glucosides.  相似文献   

19.
A gene (aman6) encoding endo-1,6-α-D-mannanase, a yeast mannan backbone degrading enzyme from Bacillus circulans was cloned. The putative aman6 was 1767 base pairs long and encoded a mature 1,6-α-D-mannanase protein of 589 amino acids and a signal peptide of 36 amino acids. The purified mature 1,6-α-D-mannanase from the Escherichia coli transformant showed 61-kDa protein, and N-terminal amino acid sequence and other general properties of the recombinant enzyme were identical to those of 1,6-α-D-mannanase from Bacillus circulans TN-31.  相似文献   

20.
Thermophilic Bacillus circulans IIIB153 isolated from hot springs of North West Himalayas, India, produced an extracellular lipase, which exhibited significant biofilm disruption property on the static biofilm disruption model with a single species of Actinomyces viscosous. The gene encoding the lipase was cloned and overexpressed in Escherichia coli. Recombinant Bacillus circulans lipase (BCL), a monomer with molecular mass of 43 kDa also exhibited significant biofilm disruption activity. The enzyme was optimally active at 60°C, pH 8.5 and retained >70% of its original activity after 1 h incubation at 60°C. 3D structure of BCL developed by homology modeling showed a typical α/β hydrolase fold, a characteristic feature of lipolytic enzymes. Comparison of thermostable BCL with mesostable lipase from Chromobacterium viscosum at the sequence and structure level showed distinct variations in the structural features, with the presence of a high content of proline residues, aromatic amino acids and salt bridges. These features along with the presence of zinc-binding site observed in BCL structure could have a potential role in thermal stability of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号