首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Passive tension in striated muscles derives primarily from the extension of the giant protein titin. However, several studies have suggested that, in cardiac muscle, interactions between titin and actin might also contribute to passive tension. We expressed recombinant fragments representing the subdomains of the extensible region of cardiac N2B titin (tandem-Ig segments, the N2B splice element, and the PEVK domain), and assayed them for binding to F-actin. The PEVK fragment bound F-actin, but no binding was detected for the other fragments. Comparison with a skeletal muscle PEVK fragment revealed that only the cardiac PEVK binds actin at physiological ionic strengths. The significance of PEVK-actin interaction was investigated using in vitro motility and single-myocyte mechanics. As F-actin slid relative to titin in the motility assay, a dynamic interaction between the PEVK domain and F-actin retarded filament sliding. Myocyte results suggest that a similar interaction makes a significant contribution to the passive tension. We also investigated the effect of calcium on PEVK-actin interaction. Although calcium alone had no effect, S100A1, a soluble calcium-binding protein found at high concentrations in the myocardium, inhibited PEVK-actin interaction in a calcium-dependent manner. Gel overlay analysis revealed that S100A1 bound the PEVK region in vitro in a calcium-dependent manner, and S100A1 binding was observed at several sites along titin's extensible region in situ, including the PEVK domain. In vitro motility results indicate that S100A1-PEVK interaction reduces the force that arises as F-actin slides relative to the PEVK domain, and we speculate that S100A1 may provide a mechanism to free the thin filament from titin and reduce titin-based tension before active contraction.  相似文献   

2.
Identification of new repeating motifs in titin   总被引:2,自引:0,他引:2  
Greaser M 《Proteins》2001,43(2):145-149
Repeating motifs of 26-28 amino acids have been identified in the PEVK region of the giant elastic protein titin. These motifs, termed PPAK for the four amino acids that often constitute the beginning of the motif, occur 60 times in human soleus titin. PPAK motifs occur in groups of 2-12 that are separated by regions rich in glutamic acid (approximately 45%) and termed polyE segments. The fluctuation of the net charge between the PPAK and polyE regions suggests ionic interactions between these segments and their involvement in the elastic function of titin. Proteins 2001;43:145-149.  相似文献   

3.
Experiments were conducted on several synthetic and expressed peptides from the PEVK region of titin, the giant muscle protein. Different secondary structure prediction methods based on amino acid sequence gave estimates ranging from over 70% alpha helical to no helix (totally disordered) for the polyE peptide corresponding to human exon 115. Circular dichroism (CD) experiments demonstrated that both the positively charged PPAK modules and the negatively charged PolyE repeats had similar spectral properties with disordered secondary structure predominating. Gel permeation chromatography showed that both PPAK and polyE peptides had 2-4 times larger Stokes radii than expected from their molecular mass. Mixtures of the oppositely charged titin peptides caused no change in apparent secondary structure as observed by circular dichroism or migration properties using native gel electrophoresis. Similarly addition of calcium did not alter the CD spectra or peptide electrophoretic mobility of the individual peptides or their mixtures. The properties of both the PPAK and polyE type peptides suggest that both had most of the characteristic properties to be classified as intrinsically disordered proteins.  相似文献   

4.
The muscle protein titin plays a crucial role in passive elasticity and the disordered PEVK region within titin is central to that function. The PEVK region is so named due to its high proline, glutamate, valine and lysine content and the high charge density in this region results in a lack of organized structure within this domain. The PEVK region is highly extensible but the molecular interactions that contribute to the elastic nature of the PEVK still remain poorly described. The PEVK region is formed by two unique sequence motifs. The PPAK motif is a 26 to 28 amino acid sequence that contains a mixture of charged and hydrophobic residues and is the primary building block for the PEVK region. Poly-E sequence motifs vary in length and contain clusters of 3–4 glutamic acids distributed throughout the motif. In this study, we derived two 28-residue peptides from the human titin protein sequence and measured their structural characteristics over a range of pHs. Our results demonstrate that the poly-E peptide undergoes a shift from a more rigid and elongated state to a more collapsed state as pH decreases with the midpoint of this transition being at pH ~5.5. Interestingly, a similar conformational shift is not observed in the PPAK peptide. These results suggest that the poly-E motif might provide a nucleating site for the PEVK when the muscle is not in an extended state.  相似文献   

5.
PEVK domain of titin: an entropic spring with actin-binding properties   总被引:6,自引:0,他引:6  
The PEVK domain of the giant muscle protein titin is a proline-rich sequence with unknown secondary/tertiary structure. Here we compared the force-extension behavior of cloned cardiac PEVK titin measured by single-molecule atomic force spectroscopy with the extensibility of the PEVK domain measured in intact cardiac muscle sarcomeres. The analysis revealed that cardiac PEVK titin acts as an entropic spring with the properties of a random coil exhibiting mechanical conformations of different flexibility. Since in situ, titin is in close proximity to the thin filaments, we also studied whether the PEVK domain of cardiac or skeletal titin may interact with actin filaments. Interaction was indeed found in the in vitro motility assay, in which recombinant PEVK titin constructs slowed down the sliding velocity of actin filaments over myosin. Skeletal PEVK titin affected the actin sliding to a lesser degree than cardiac PEVK titin. The cardiac PEVK effect was partially suppressed by physiological Ca(2+) concentrations, whereas the skeletal PEVK effect was independent of [Ca(2+)]. Cosedimentation assays confirmed the Ca(2+)-modulated actin-binding propensity of cardiac PEVK titin, but did not detect interaction between actin and skeletal PEVK titin. In myofibrils, the relatively weak actin-PEVK interaction gives rise to a viscous force component opposing filament sliding. Thus, the PEVK domain contributes not only to the extensibility of the sarcomere, but also affects contractile properties.  相似文献   

6.
Drebrin is an actin-binding protein which is expressed at highly levels in neurons. When introduced into fibroblasts, it has been known to bind to F-actin and to cause remodeling of F-actin. Here, we performed a domain analysis of the actin-binding and actin-remodeling activities of drebrin. Various fragments of drebrin cDNA were fused with green fluorescent protein cDNA and introduced into Chinese hamster ovary cells. Association of the fusion protein with F-actin and remodeling of the F-actin were examined. We found that the central 85-amino-acid sequence (residues 233-317) was sufficient for the binding to and remodeling of F-actin. The binding activity of this fragment was relatively low compared with that of full-length drebrin, but all the types of abnormalities of F-actin that are observed with full-length drebrin were also observed with this fragment. When this sequence was further fragmented, the actin-binding activity was greatly reduced and the actin-remodeling activity disappeared. The actin-binding activity of the central region of drebrin was confirmed by a cosedimentation assay of chymotryptic fragments of drebrin with purified actin. These data indicate that the actin-binding domain and actin-remodeling domain are identical and that this domain is located at the central region of drebrin.  相似文献   

7.
Contractile actomyosin bundles are critical for numerous aspects of muscle and nonmuscle cell physiology. Due to the varying composition and structure of actomyosin bundles in vivo, the minimal requirements for their contraction remain unclear. Here, we demonstrate that actin filaments and filaments of smooth muscle myosin motors can self-assemble into bundles with contractile elements that efficiently transmit actomyosin forces to cellular length scales. The contractile and force-generating potential of these minimal actomyosin bundles is sharply sensitive to the myosin density. Above a critical myosin density, these bundles are contractile and generate large tensile forces. Below this threshold, insufficient cross-linking of F-actin by myosin thick filaments prevents efficient force transmission and can result in rapid bundle disintegration. For contractile bundles, the rate of contraction decreases as forces build and stalls under loads of ∼0.5 nN. The dependence of contraction speed and stall force on bundle length is consistent with bundle contraction occurring by several contractile elements connected in series. Thus, contraction in reconstituted actomyosin bundles captures essential biophysical characteristics of myofibrils while lacking numerous molecular constituents and structural signatures of sarcomeres. These results provide insight into nonsarcomeric mechanisms of actomyosin contraction found in smooth muscle and nonmuscle cells.  相似文献   

8.
A recent publication in Biophysical Journal by Bianco et al. (“Interaction forces between F-actin and titin PEVK domain measured with optical tweezers”) shows that the PEVK domain of titin molecules interacts with F-actin. This newly discovered behavior could influence the mechanical properties of striated muscles, and Bianco et al. suggest that the interactions between actin and titin could modulate thixotropic behavior. In this Comment to the Editor, we suggest that the thixotropic properties of striated muscles in vivo are more likely to reflect dynamic changes in the proportion of myosin cross-bridges bound between the myofilaments.  相似文献   

9.
Many F-actin crosslinking proteins consist of two actin-binding domains separated by a rod domain that can vary considerably in length and structure. In this study, we used single-molecule force spectroscopy to investigate the mechanics of the immunoglobulin (Ig) rod domains of filamin from Dictyostelium discoideum (ddFLN). We find that one of the six Ig domains unfolds at lower forces than do those of all other domains and exhibits a stable unfolding intermediate on its mechanical unfolding pathway. Amino acid inserts into various loops of this domain lead to contour length changes in the single-molecule unfolding pattern. These changes allowed us to map the stable core of approximately 60 amino acids that constitutes the unfolding intermediate. Fast refolding in combination with low unfolding forces suggest a potential in vivo role for this domain as a mechanically extensible element within the ddFLN rod.  相似文献   

10.
A common protease-resistant fragment (Mr = 27,000) was generated from purified rat hepatic actinogelin, and rat skeletal muscle and chicken gizzard alpha-actinins by limited proteolysis using thermolysin. A monoclonal antibody (A-1) which was raised against the rat hepatic actinogelin and has a cross-reactivity with rat skeletal muscle and chicken gizzard alpha-actinins was found to bind to all of the 27-kDa fragments selectively. Furthermore, one-dimensional peptide maps of the 27-kDa fragments showed a close similarity indicating the presence of some conservation in primary structure of the fragments. The 27-kDa fragments were purified to homogeneity by the same procedure using ammonium sulfate fractionation and hydrophobic chromatography. As the fragments were easily separated from other peptides during purification, they might be present as an independent structural domain. Purified 27-kDa fragments were found to bind to F-actin in a Ca2+-insensitive manner. The fragments failed to affect the low-shear viscosity of F-actin up to a molar ratio to actin monomer of 1:3.2, indicating that gelation activity of the parental molecules was lost and the fragments have only a single binding site on F-actin. Binding of the fragments to F-actin was almost completely inhibited by respective parental molecules, while binding of the whole molecules was blocked partly by their 27-kDa fragments. Thus, the interaction of the fragments with F-actin seemed to be specific, although apparent affinity was lower than the parental molecules. Considering these results, we concluded that the 27-kDa fragments are a conserved, monovalent, and Ca2+-insensitive actin-binding domain of the actinogelin and muscle alpha-actinins.  相似文献   

11.
Titin, the giant protein of striated muscle, provides a continuous link between the Z-disk and the M-line of a sarcomere. The elastic I-band section of titin comprises two main structural elements, stretches of immunoglobulin-like domains and a unique sequence, the PEVK segment. Both elements contribute to the extensibility and passive force development of nonactivated muscle. Extensibility of the titin segments in skeletal muscle has been determined by immunofluorescence/immunoelectron microscopy of sarcomeres stained with sequence-assigned titin antibodies. The force developed upon stretch of titin has been measured on isolated molecules or recombinant titin fragments with the help of optical tweezers and the atomic force microscope. Force has also been measured in single isolated myofibrils. The force-extension relation of titin could be readily fitted with models of biopolymer elasticity. For physiologically relevant extensions, the elasticity of the titin segments was largely explainable by an entropic-spring mechanism. The modelling explains why during stretch of titin, the Ig-domain regions (with folded modules) extend before the PEVK domain. In cardiac muscle, I-band titin is expressed in different isoforms, termed N2-A and N2-B. The N2-A isoform resembles that of skeletal muscle, whereas N2-B titin is shorter and is distinguished by cardiac-specific Ig-motifs and nonmodular sequences within the central I-band section. Examination of N2-B titin extensibility revealed that this isoform extends by recruiting three distinct elastic elements: poly-Ig regions and the PEVK domain at lower stretch and, in addition, a unique 572-residue sequence insertion at higher physiological stretch. Extension of all three elements allows cardiac titin to stretch fully reversibly at physiological sarcomere lengths, without the need to unfold individual Ig domains. However, unfolding of a very small number of Ig domains remains a possibility.  相似文献   

12.
B Zhang  G Xu    J S Evans 《Biophysical journal》1999,77(3):1306-1315
Molecular elasticity is a physicomechanical property that is associated with a select number of polypeptides and proteins, such as the giant muscle protein, titin, and the extracellular matrix protein, tenascin. Both proteins have been the subject of atomic force microscopy (AFM), laser tweezer, and other in vitro methods for examining the effects of force extension on the globular (FNIII/Ig-like) domains that comprise each protein. In this report we present a time-dependent method for simulating AFM force extension and its effect on FNIII/Ig domain unfolding and refolding. This method treats the unfolding and refolding process as a standard three-state protein folding model (U right arrow over left arrow T right arrow over left arrow F, where U is the unfolded state, T is the transition or intermediate state, and F is the fully folded state), and integrates this approach within the wormlike chain (WLC) concept. We simulated the effect of AFM tip extension on a hypothetical titin molecule comprised of 30 globular domains (Ig or FNIII) and 25% Pro-Glu-Val-Lys (PEVK) content, and analyzed the unfolding and refolding processes as a function of AFM tip extension, extension rate, and variation in PEVK content. In general, we find that the use of a three-state protein-folding kinetic-based model and the implicit inclusion of PEVK domains can accurately reproduce the experimental force-extension curves observed for both titin and tenascin proteins. Furthermore, our simulation data indicate that PEVK domains exhibit extensibility behavior, assist in the unfolding and refolding of FNIII/Ig domains in the titin molecule, and act as a force "buffer" for the FNIII/Ig domains, particularly at low and moderate extension forces.  相似文献   

13.
The I-band region of the giant muscle protein titin contains a large domain enriched for the amino acids proline, glutamate, valine, and lysine and is denoted the PEVK domain. The PEVK domain of titin encodes a random coil shown to be an important factor in the passive elasticity of titin. Muscle-specific splicing of 116 PEVK exons encodes this domain. It has been proposed that proline contents determine the elasticity of the PEVK polypeptide, where the individual exons code for "flexibility cassettes." To test this hypothesis, we have measured the elasticity of three distinct polypeptides encoded by individual PEVK exons (161, 120 and 184) that varied greatly in their proline contents (7, 14, and 37% respectively) and total PEVK contents (55, 70, and 87%). We used single molecule atomic force microscopy techniques to measure the persistence length, p, of the engineered PEVK proteins. Surprisingly, all three exons 161, 120, and 184 coded for proteins with similar values of persistence length, p = 0.92 +/- 0.38, 0.89 +/- 0.42, and 0.98 +/- 0.4 nm, respectively. We conclude that the PEVK exons encode polypeptides of similar elastic properties, unrelated to their total PEVK contents. Hence, alternative splicing solely adjusts the length of the PEVK domain of titin.  相似文献   

14.
The core of skeletal muscle Z-discs consists of actin filaments from adjacent sarcomeres that are cross-linked by α-actinin homodimers. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)/Cypher interacts with α-actinin, myotilin, and other Z-disc proteins via the PDZ domain. However, these interactions are not sufficient to maintain the Z-disc structure. We show that ZASP directly interacts with skeletal actin filaments. The actin-binding domain is between the modular PDZ and LIM domains. This ZASP region is alternatively spliced so that each isoform has unique actin-binding domains. All ZASP isoforms contain the exon 6-encoded ZASP-like motif that is mutated in zaspopathy, a myofibrillar myopathy (MFM), whereas the exon 8–11 junction-encoded peptide is exclusive to the postnatal long ZASP isoform (ZASP-LΔex10). MFM is characterized by disruption of skeletal muscle Z-discs and accumulation of myofibrillar degradation products. Wild-type and mutant ZASP interact with α-actin, α-actinin, and myotilin. Expression of mutant, but not wild-type, ZASP leads to Z-disc disruption and F-actin accumulation in mouse skeletal muscle, as in MFM. Mutations in the actin-binding domain of ZASP-LΔex10, but not other isoforms, cause disruption of the actin cytoskeleton in muscle cells. These isoform-specific mutation effects highlight the essential role of the ZASP-LΔex10 isoform in F-actin organization. Our results show that MFM-associated ZASP mutations in the actin-binding domain have deleterious effects on the core structure of the Z-discs in skeletal muscle.  相似文献   

15.
Cells generate mechanical forces primarily from interactions between F-actin, cross-linking proteins, myosin motors, and other actin-binding proteins in the cytoskeleton. To understand how molecular interactions between the cytoskeletal elements generate forces, a number of in vitro experiments have been performed but are limited in their ability to accurately reproduce the diversity of motor mobility. In myosin motility assays, myosin heads are fixed on a surface and glide F-actin. By contrast, in reconstituted gels, the motion of both myosin and F-actin is unrestricted. Because only these two extreme conditions have been used, the importance of mobility of motors for network behaviors has remained unclear. In this study, to illuminate the impacts of motor mobility on the contractile behaviors of the actin cytoskeleton, we employed an agent-based computational model based on Brownian dynamics. We find that if motors can bind to only one F-actin like myosin I, networks are most contractile at intermediate mobility. In this case, less motor mobility helps motors stably pull F-actins to generate tensile forces, whereas higher motor mobility allows F-actins to aggregate into larger clustering structures. The optimal intermediate motor mobility depends on the stall force and affinity of motors that are regulated by mechanochemical rates. In addition, we find that the role of motor mobility can vary drastically if motors can bind to a pair of F-actins. A network can exhibit large contraction with high motor mobility because motors bound to antiparallel pairs of F-actins can exert similar forces regardless of their mobility. Results from this study imply that the mobility of molecular motors may critically regulate contractile behaviors of actin networks in cells.  相似文献   

16.
Molecular mechanics of cardiac titin's PEVK and N2B spring elements.   总被引:3,自引:0,他引:3  
Titin is a giant elastic protein that is responsible for the majority of passive force generated by the myocardium. Titin's force is derived from its extensible I-band region, which, in the cardiac isoform, comprises three main extensible elements: tandem Ig segments, the PEVK domain, and the N2B unique sequence (N2B-Us). Using atomic force microscopy, we characterized the single molecule force-extension curves of the PEVK and N2B-Us spring elements, which together are responsible for physiological levels of passive force in moderately to highly stretched myocardium. Stretch-release force-extension curves of both the PEVK domain and N2B-Us displayed little hysteresis: the stretch and release data nearly overlapped. The force-extension curves closely followed worm-like chain behavior. Histograms of persistence length (measure of chain bending rigidity) indicated that the single molecule persistence lengths are approximately 1.4 and approximately 0.65 nm for the PEVK domain and N2B-Us, respectively. Using these mechanical characteristics and those determined earlier for the tandem Ig segment (assuming folded Ig domains), we modeled the cardiac titin extensible region in the sarcomere and calculated the extension of the various spring elements and the forces generated by titin, both as a function of sarcomere length. In the physiological sarcomere length range, predicted values and those obtained experimentally were indistinguishable.  相似文献   

17.
E Friederich  C Huet  M Arpin  D Louvard 《Cell》1989,59(3):461-475
The function of villin, an actin-binding protein, has been investigated by transfecting fibroblasts with cloned human cDNAs encoding wild-type villin or functional villin domains. Synthesis of large amounts of villin induced the growth of numerous long microvilli on cell surfaces together with the redistribution of F-actin. These microvilli contained a cytoskeleton of F-actin, and their appearance was frequently accompanied by the disappearance of stress fibers. The complete villin gene sequence was required to exert its morphogenic effect. Villin lacking one actin-binding domain (113 amino acids), located at its carboxyterminal end, did not induce growth if microvilli or stress fiber disruption. Our results indicate that villin plays a key role in vivo in the morphogenesis of microvilli.  相似文献   

18.
Titin is the main determinant of passive muscle force. Physiological extension of titin derives largely from its PEVK (Pro-Glu-Val-Lys) domain, which has a different length in different muscle types. Here we characterized the elasticity of the full-length, human soleus PEVK domain by mechanically manipulating its contiguous, recombinant subdomain segments: an N-terminal (PEVKI), a middle (PEVKII), and a C-terminal (PEVKIII) one third. Measurement of the apparent persistence lengths revealed a hierarchical arrangement according to local flexibility: the N-terminal PEVKI is the most rigid and the C-terminal PEVKIII is the most flexible segment within the domain. Immunoelectron microscopy supported the hierarchical extensibility within the PEVK domain. The effective persistence lengths decreased as a function of ionic strength, as predicted by the Odijk-Skolnick-Fixman model of polyelectrolyte chains. The ionic strength dependence of persistence length was similar in all segments, indicating that the residual differences in the elasticity of the segments derive from nonelectrostatic mechanisms.  相似文献   

19.
It is generally assumed that of the six domains that comprise gelsolin, domain 2 is primarily responsible for the initial contact with the actin filament that will ultimately result in the filament being severed. Other actin-binding regions within domains 1 and 4 are involved in gelsolin's severing and subsequent capping activity. The overall fold of all gelsolin repeated domains are similar to the actin depolymerizing factor (ADF)/cofilin family of actin-binding proteins and it has been proposed that there is a similarity in the actin-binding interface. Gelsolin domains 1 and 4 bind G-actin in a similar manner and compete with each other, whereas domain 2 binds F-actin at physiological salt concentrations, and does not compete with domain 1. Here we investigate the domain 2 : actin interface and compare this to our recent studies of the cofilin : actin interface. We conclude that important differences exist between the interfaces of actin with gelsolin domains 1 and 2, and with ADF/cofilin. We present a model for F-actin binding of domain 2 with respect to the F-actin severing and capping activity of the whole gelsolin molecule.  相似文献   

20.
A conserved actin-binding domain (Mr = 27,000) of rat hepatic actinogelin, rat skeletal muscle, and chicken gizzard alpha-actinins (Mimura, N., and Asano, A. (1986) J. Biol. Chem. 261, 10680-10687) was separated into two components having different isoelectric points (peptides A and B) by chromatofocusing. Thermolysin digestion of peptide A generated peptide B with concomitant loss of peptide A. Amino acid compositions and tryptic maps of peptides A and B also demonstrated that peptide A is a precursor of peptide B upon thermolysin digestion. All of peptides A and B retained the activity to bind with F-actin competitively to each other. By the gel-filtration method, it was also shown that the native actin-binding 27-kDa fragments are monomeric and globular. The non-actin-binding 50- or 53.5-kDa fragment of actinogelin/alpha-actinins was, however, found to be asymmetric and dimeric in the native state. Chemical cross-linking of the 27-kDa fragment with F-actin with a water-soluble carbodiimide produced at least four different complexes (I-IV). Chemical cleaving analysis of the cross-linked products (complexes I and II) indicated that the 27-kDa fragment possesses two possible binding sites on actin at the NH2-terminal residues 1-12 (for complex I) and at residues spanning 86-119 or 123 (for complex II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号