首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the complete genome sequence of enterobacteriophage SP6, which infects Salmonella enterica serovar Typhimurium. The genome contains 43,769 bp, including a 174-bp direct terminal repeat. The gene content and organization clearly place SP6 in the coliphage T7 group of phages, but there is approximately 5 kb at the right end of the genome that is not present in other members of the group, and the homologues of T7 genes 1.3 through 3 appear to have undergone an unusual reorganization. Sequence analysis identified 10 putative promoters for the SP6-encoded RNA polymerase and seven putative rho-independent terminators. The terminator following the gene encoding the major capsid subunit has a termination efficiency of about 50% with the SP6-encoded RNA polymerase. Phylogenetic analysis of phages related to SP6 provided clear evidence for horizontal exchange of sequences in the ancestry of these phages and clearly demarcated exchange boundaries; one of the recombination joints lies within the coding region for a phage exonuclease. Bioinformatic analysis of the SP6 sequence strongly suggested that DNA replication occurs in large part through a bidirectional mechanism, possibly with circular intermediates.  相似文献   

2.
Electron microscopic analysis of bis-psoralen crosslinked adenovirus type 5 virion DNA revealed supercoiled domains in an otherwise linear DNA. The existence of supercoiled arrangement in all the virion DNA was demonstrated by the sensitivity of Ad5 DNA in pentonless virus particles to the supercoiling-dependent endonucleolytic activity of Bal31 and S1 nucleases. These nucleases were found to cleave Ad5 virion DNA at specific sites. The observation of stable cleavage sites in the limit digestion of virion DNA by Bal31 suggests that cleavage sites represent boundaries of core proteins which impede the exonuclease activity of Bal31. These data suggest that specific arrangement of core proteins on Ad5 virion DNA. Based on this analysis we determined positions of core proteins in viral genome using indirect end labeling technique. The size of supercoiled domains of virion DNA was estimated by electron microscopy and also by boundaries of mutually exclusive Bal31 cleavage sites at limit digestion condition. Our data suggest each supercoiled domain is equal to about 12% of Ad5 genome length and about 8 loops can be accommodated in Ad5 virion. However sequences at two extreme ends of the viral genome were found to be outside of supercoiled domains. An interesting correlation between supercoiled domains and gene domains of Ad5 genome was noticed.  相似文献   

3.
The time course of the appearance of intracellular viral DNA has been studied in mouse L cells infected with the single-stranded DNA virus MVM (minute virus of mice) by using a selective extraction procedure. Approximately half of this DNA elutes from hydroxyapatite as single-stranded DNA. It is sensitive to Escherichia coli exonuclease I and shows a sedimentation profile similar to DNA from the virus, suggesting that it is progeny viral DNA. The remainder of the selectively extracted DNA elutes from hydroxyapatite in the position of double-stranded DNA and is resistant to exonuclease I. Most of this DNA has a sedimentation coefficient of 14 to 16S, indicating that its molecular weight is twice that of the viral DNA. Denaturation renders the majority of the double-stranded DNA sensitive to exonuclease I, but a significant fraction renatures spontaneously in a monomolecular fashion, indicating that it has a cross-linked or hairpin structure. Chromatography of the double-stranded DNA on benzoylated diethylaminoethyl cellulose resolves two components, one with duplex structure and one which contains single-stranded regions. A short pulse label late in infection predominantly labels the latter class of DNA, suggesting that it contains replicating intermediates. The possible roles of these various forms of DNA in the replication of the viral genome are discussed.  相似文献   

4.
The replication checkpoint coordinates the cell cycle with DNA replication and recombination, preventing genome instability and cancer. The budding yeast Rad53 checkpoint kinase stabilizes stalled forks and replisome-fork complexes, thus preventing the accumulation of ss-DNA regions and reversed forks at collapsed forks. We searched for factors involved in the processing of stalled forks in HU-treated rad53 cells. Using the neutral-neutral two-dimensional electrophoresis technique (2D gel) and psoralen crosslinking combined with electron microscopy (EM), we found that the Exo1 exonuclease is recruited to stalled forks and, in rad53 mutants, counteracts reversed fork accumulation by generating ss-DNA intermediates. Hence, Exo1-mediated fork processing resembles the action of E. coli RecJ nuclease at damaged forks. Fork stability and replication restart are influenced by both DNA polymerase-fork association and Exo1-mediated processing. We suggest that Exo1 counteracts fork reversal by resecting newly synthesized chains and resolving the sister chromatid junctions that cause regression of collapsed forks.  相似文献   

5.
The human Werner syndrome protein (hWRN-p) possessing DNA helicase and exonuclease activities is essential for genome stability. Plants have no homologue of this bifunctional protein, but surprisingly the Arabidopsis genome contains a small open reading frame (ORF) (AtWRNexo) with homology to the exonuclease domain of hWRN-p. Expression of this ORF in Escherichia coli revealed an exonuclease activity for AtWRN-exo-p with similarities but also some significant differences to hWRN-p. The protein digests recessed strands of DNA duplexes in the 3' --> 5' direction but hardly single-stranded DNA or blunt-ended duplexes. In contrast to the Werner exonuclease, AtWRNexo-p is also able to digest 3'-protruding strands. DNA with recessed 3'-PO4 and 3'-OH termini is degraded to a similar extent. AtWRNexo-p hydrolyzes the 3'-recessed strand termini of duplexes containing mismatched bases. AtWRNexo-p needs the divalent cation Mg2+ for activity, which can be replaced by Mn2+. Apurinic sites, cholesterol adducts, and oxidative DNA damage (such as 8-oxoadenine and 8-oxoguanine) inhibit or block the enzyme. Other DNA modifications, including uracil, hypoxanthine and ethenoadenine, did not inhibit AtWRNexo-p. A mutation of a conserved residue within the exonuclease domain (E135A) completely abolished the exonucleolytic activity. Our results indicate that a type of WRN-like exonuclease activity seems to be a common feature of the DNA metabolism of animals and plants.  相似文献   

6.
Adenovirus 5 DNA-protein complex is isolated from virions as a duplex DNA molecule covalently attached by the 5' termini of each strand to virion protein of unknown function. The DNA-protein complex can be digested with E. coli exonuclease III to generate molecules analogous to DNA replication intermediates in that they contain long single stranded regions ending in 5' termini bound to terminal protein. The infectivity of pronase digested Adenovirus 5 DNA is greatly diminished by exonuclease III digestion. However, the infectivity of the DNA-protein complex is not significantly altered when up to at least 2400 nucleotides are removed from the 3' ends of each strand. This indicates that the terminal protein protects 5' terminated single stranded regions from digestion by a cellular exonuclease. DNA-protein complex prepared from a host range mutant with a mutation mapping in the left 4% of the genome was digested with exonuclease III, hybridized to a wild type restriction fragment comprising the left 8% of the genome, and transfected into HeLa cells. Virus with wild type phenotype was recovered at high frequency.  相似文献   

7.
A natural polysaccharide schizophyllan (SPG) has been known to form a stable complex with poly(dA). We attached a poly(dA)(80) tail to the both ends of a linear double-stranded DNA, which had been prepared from a plasmid DNA vector. The poly(dA) tailed DNA verified to form complex with SPG by gel electrophoresis and atomic force microscopy (AFM). AFM images indicated that the complexes exhibit a dumbbell-like architecture, that is, quite similar to that of adenovirus genome. The complex demonstrated excellent exonuclease resistance, probably because of the protection effect by SPG complexation.  相似文献   

8.
Microinjection of herpes simplex virus (HSV)-infected cell mRNA into Xenopus laevis oocytes resulted in the production of a new exonuclease activity. This enzyme strongly resembled the HSV alkaline exonuclease in many biochemical properties, and hybrid-arrested translation studies showed that it was virus coded, mapping at 0.080 to 0.185 genome map units. Exonuclease mRNA had a size and genome location equivalent to the mRNA encoding V185 in reticulocyte lysates, suggesting that V185 is the exonuclease. The enzyme synthesized in oocytes was found to act as an exonuclease in vivo. Two plasmids containing HSV DNA fragments directed the synthesis of exonuclease when microinjected into oocyte nuclei, and this finding enabled the coding and control sequences for this gene to be localized to 0.155 to 0.185 genome map units.  相似文献   

9.
Exonucleolytic proofreading of DNA synthesis errors is one of the major determinants ofgenome stability. However, many DNA transactions that contribute to genome stability requiresynthesis by polymerases that naturally lack intrinsic 3´ exonuclease activity and some of whichare highly inaccurate. Here we discuss evidence that errors made by these polymerases may beedited by a separate 3´ exonuclease, and we consider how such extrinsic proofreading may differfrom proofreading by exonucleases that are intrinsic to replicative DNA polymerases.  相似文献   

10.
A fluorescence microscopy technique has been developed to visualize the behavior of individual DNA and protein molecules. Real-time direct observation of a single DNA molecule can be used to investigate the dynamics of DNA-protein interactions, such as the DNA digestion reaction by lambda exonuclease. In conventional methods it is impossible to analyze the dynamics of an individual lambda exonuclease molecule on a DNA because they can only observe the average behavior of a number of exonuclease molecules. Observation of a single molecule, on the other hand, can reveal processivity and binding rate of an individual exonuclease molecule. To evaluate the dynamics of lambda exonuclease, a stained lambda DNA molecule with one biotinylated terminal was fixed on an avidin-coated coverslip and straightened using a d.c. electric field. Microscopic observation of digestion of a straightened DNA molecule by lambda exonuclease revealed that the DNA digestion rate was approximately 1000 bases/s and also demonstrated high processivity.  相似文献   

11.
Bacteriophage T5 DNA was examined in an electron microscope after limited digestion with exonuclease III from Escherichia coli. The effect of the exonuclease treatment was to convert each naturally occurring single-chain interruption in T5 DNA into a short segment of single-stranded DNA. The locations of these segments were determined for T5st(+) DNA, T5st(0) DNA, and fragments of T5st(0) DNA generated by EcoRI restriction endonuclease. The results indicate that single-chain interruptions occurr in a variable, but nonrandom, manner in T5 DNA. T5st(+) DNA has four principal interruptions located at sites approximately 7.9, 18.5, 32.6, and 64.8% from one end of the molecule. Interruptions occur at these sites in 80 to 90% of the population. A large number of additional sites, located primarily at the ends of the DNA, contain interruptions at lower frequencies. The average number of interruptions per genome, as determined by this method, is 8. A similar distribution of breaks occurs in T5st(0) DNA, except that the 32.6% site is missing. At least one of the principal interruptions is reproducibly located within an interval of 0.2% of the entire DNA.  相似文献   

12.
Faithful replication of genomic DNA by high-fidelity DNA polymerases is crucial for the survival of most living organisms. While high-fidelity DNA polymerases favor canonical base pairs over mismatches by a factor of ∼1 × 105, fidelity is further enhanced several orders of magnitude by a 3′–5′ proofreading exonuclease that selectively removes mispaired bases in the primer strand. Despite the importance of proofreading to maintaining genome stability, it remains much less studied than the fidelity mechanisms employed at the polymerase active site. Here we characterize the substrate specificity for the proofreading exonuclease of a high-fidelity DNA polymerase by investigating the proofreading kinetics on various DNA substrates. The contribution of the exonuclease to net fidelity is a function of the kinetic partitioning between extension and excision. We show that while proofreading of a terminal mismatch is efficient, proofreading a mismatch buried by one or two correct bases is even more efficient. Because the polymerase stalls after incorporation of a mismatch and after incorporation of one or two correct bases on top of a mismatch, the net contribution of the exonuclease is a function of multiple opportunities to correct mistakes. We also characterize the exonuclease stereospecificity using phosphorothioate-modified DNA, provide a homology model for the DNA primer strand in the exonuclease active site, and propose a dynamic structural model for the transfer of DNA from the polymerase to the exonuclease active site based on MD simulations.  相似文献   

13.
Enzymes with 3′-5′ exonuclease activities are important in promoting the accuracy of DNA replication and DNA repair by proofreading. The alteration of the function of these enzymes by endogenous or exogenous effectors could, therefore, have a considerable impact on DNA replication and ultimately on genome integrity. We have developed a label-free high-throughput screening method for quantifying the effects of different reagents on exonuclease activity. The assay is based on a hairpin-forming biotinylated oligonucleotide substrate that contains one or more exonuclease-resistant phosphorothioate nucleotides. The activity and specificity of the selected 3′-5′ exonuclease is determined indirectly using a sensitive pyrosequencing reaction after cleanup of the samples. In this pyrosequencing step, the amount of nucleotides filled into each position of the exonucleolytically degraded 3′ end of the substrate can be recorded quantitatively and equals the amount of the nucleotides removed by the exonuclease. This system allows the estimation of both processivity and efficiency of the exonuclease activity. We have employed compounds reported in the literature to inhibit the exonuclease activities of either exonuclease III or the large fragment of polymerase I (Klenow fragment) to evaluate the assay.  相似文献   

14.
We have biochemically and kinetically characterized the polymerase and exonuclease activities of the third B-family polymerase (Dpo3) from the hyperthermophilic Crenarchaeon, Sulfolobus solfataricus (Sso). We have established through mutagenesis that despite incomplete sequence conservation, the polymerase and exonuclease active sites are functionally conserved in Dpo3. Using pre-steady-state kinetics, we can measure the fidelity of nucleotide incorporation by Dpo3 from the polymerase active site alone to be 10(3)-10(4) at 37 °C. The functional exonuclease proofreading active site will increase fidelity by at least 10(2), making Dpo3 comparable to other DNA polymerases in this family. Additionally, Dpo3's exonuclease activity is modulated by temperature, where a loss of promiscuous degradation activity can be attributed to a reorganization of the exonuclease domain when it is bound to primer-template DNA at high temperatures. Unexpectedly, the DNA binding affinity is weak compared with those of other DNA polymerases of this family. A comparison of the fidelity, polymerization kinetics, and associated functional exonuclease domain with those previously reported for other Sso polymerases (Dpo1 and Dpo4) illustrates that Dpo3 is a potential player in the proper maintenance of the archaeal genome.  相似文献   

15.
Synchronous digestion of SV40 DNA by exonuclease III.   总被引:2,自引:0,他引:2  
R Wu  G Ruben  B Siegel  E Jay  P Spielman  C P Tu 《Biochemistry》1976,15(4):734-740
We have established an optimal condition for the synchronous digestion of SV40 DNA with Escherichia coli exonuclease III. Electron microscopy and polyacrylamide gel electrophoresis were used to obtain accurate measurements on the lengths of DNA before and after exonuclease III digestion. Based on this finding, a new method for determining the sequence of long duplex DNA can be realized. It involves (a) the synchronous digestion of the DNA from the 3' ends with exonuclease III, followed by (b) repair synthesis with labeled nucleotides and DNA polymerase, and (c) sequence analysis of the repaired DNA.  相似文献   

16.
C Moore  J Griffith 《Gene》1983,24(2-3):191-198
We have developed a novel technique to map restriction sites on large duplex DNAs by electron microscopy. In this method, the sample DNA is first cut with a restriction enzyme. The resulting fragments are briefly digested with Escherichia coli exonuclease III, and treated with wheat germ RNA polymerase II to fill-in with RNA the resulting gaps. These small RNAs, complementary to sequences immediately adjacent to either side of the restriction site, are isolated from the DNA template and R-looped to the full-length DNA. When this material is prepared by the formamide-cytochrome spreading technique, small bubbles are visible wherever there is a restriction site on the DNA. Improved methods of mapping are outlined.  相似文献   

17.
A fluorescence microscopy technique has been developed to visualize the behavior of individual DNA and protein molecules. Real-time direct observation of a single DNA molecule can be used to investigate the dynamics of DNA–protein interactions, such as the DNA digestion reaction by λ exonuclease. In conventional methods it is impossible to analyze the dynamics of an individual λ exonuclease molecule on a DNA because they can only observe the average behavior of a number of exonuclease molecules. Observation of a single molecule, on the other hand, can reveal processivity and binding rate of an individual exonuclease molecule. To evaluate the dynamics of λ exonuclease, a stained λ DNA molecule with one biotinylated terminal was fixed on an avidin-coated coverslip and straightened using a d.c. electric field. Microscopic observation of digestion of a straightened DNA molecule by λ exonuclease revealed that the DNA digestion rate was ~1000 bases/s and also demonstrated high processivity.  相似文献   

18.
The gam gene of bacteriophage Mu encodes a protein which protects linear double stranded DNA from exonuclease degradation in vitro and in vivo. We purified the Mu gam gene product to apparent homogeneity from cells in which it is over-produced from a plasmid clone. The purified protein is a dimer of identical subunits of 18.9 kd. It can aggregate DNA into large, rapidly sedimenting complexes and is a potent exonuclease inhibitor when bound to DNA. The N-terminal amino acid sequence of the purified protein was determined by automated degradation and the nucleotide sequence of the Mu gam gene is presented to accurately map its position in the Mu genome.  相似文献   

19.
Werner syndrome is an inherited disease displaying a premature aging phenotype. The gene mutated in Werner syndrome encodes both a 3' --> 5' DNA helicase and a 3' --> 5' DNA exonuclease. Both WRN helicase and exonuclease preferentially utilize DNA substrates containing alternate secondary structures. By virtue of its ability to resolve such DNA structures, WRN is postulated to prevent the stalling and collapse of replication forks that encounter damaged DNA. Using electron microscopy, we visualized the binding of full-length WRN to DNA templates containing replication forks and Holliday junctions, intermediates observed during DNA replication and recombination, respectively. We show that both wild-type WRN and a helicase-defective mutant bind with exceptionally high specificity (>1000-fold) to DNA secondary structures at the replication fork and at Holliday junctions. Little or no binding is observed elsewhere on the DNA molecules. Calculations of the molecular weight of full-length WRN revealed that, in solution, WRN exists predominantly as a dimer. However, WRN bound to DNA is larger; the mass is consistent with that of a tetramer.  相似文献   

20.
T7 bacteriophage infects with equal efficiency restriction-proficient Escherichia coli K12 cells and the restriction-deficient mutants. To the contrary, the purified phage DNA transfects wild-type cells at a very low efficiency (10?9 plaques/genome equivalent). Mutations in the recB recC (exonuclease V) and sbcB (exonuclease I) loci increase the transfecting efficiency tenfold. A 1000-fold increase is obtained with cells deficient in restriction. No further increase is observed in hosts carrying both sets of mutations. The transfecting activity of the DNA on restriction-deficient hosts increases another 20-fold (up to 4 × 10?5 plaques/genome equivalent) by complete erosion of the redundant regions of DNA with λ exonuclease, both in rec+ and recB recC sbcB genotypes. Circles and linear oligomers arising from the annealing of eroded DNA show the same transfecting activity as the unannealed monomers. The terminal redundancy of the genome, as measured by the onset of annealability of eroded molecules, was found to comprise 50 to 100 base-pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号