首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A partially purified Escherichia coli heat-stable (ST) enterotoxin had been shown to increase the 45Ca2+ uptake by rat intestinal brush-border membrane vesicles (BBMV). The effect of ST enterotoxin on calcium uptake by BBMV was significant compared with the control and was also dose-dependent. The stimulation of calcium uptake by ST enterotoxin was inhibited by chemical agents which block the calcium entry into the cell. These data indicate that the ST acts as calcium ionophore in this particular system.  相似文献   

2.
Abstract A partially purified E. coli heat-stable (ST) enterotoxin stimulated the phosphoinositide (PI)-specific phospholipase C (PLC) activity of the rat intestine. The effect of ST on PI-specific PLC was significant compared with the control. The importance of PI-specific phospholipase C as a potential agent to promote calcium translocation across the plasma membrane, was discussed in this communication.  相似文献   

3.
Abstract The prostaglandin response of mouse intestinal epithelial cells after exposure to Escherichia coli heat-stable enterotoxin II was examined. The quantity of prostaglandin E2 produced by the intestinal cells was directly related to the dose of heat-stable enterotoxin II. The change in the amount of prostaglandin E2 over time correlated to that of the volume of fluid released into the intestinal lumen. We then demonstrated that administration of heat-stable enterotoxin II into the intestinal loops of mice induced elevation of arachidonic acid and phosphatidic acid levels in intestinal epithelial cells. These results show that heat-stable enterotoxin II stimulates arachidonic acid metabolism in intestinal epithelial cells and that the synthesized prostaglandin E2 functions as a mediator of fluid secretion induced by this enterotoxin.  相似文献   

4.
Abstract Two variants of Escherichia coli heat-stable enterotoxin Ip, in which the amino acid residue at position 11 was substituted with lysine or arginine, were purified to near homogeneity from the culture supernatants of toxin-producing mutant strains. Neither the purified heat-stable enterotoxin Ip(Lys-11) nor the purified heat-stable enterotoxin Ip(Arg-11) showed a positive response in the suckling mouse assay or in the mouse intestinal loop assay. Furthermore, live bacteria producing these mutant heat-stable Ip enterotoxins did not cause fluid accumulation in mouse intestinal loops, in contrast to bacteria producing native heat-stable enterotoxin Ip. Nevertheless, antisera raised against both heat-stable enterotoxin Ip(Lys-11) and heat-stable enterotoxin Ip(Arg-11) neutralized the enterotoxic activity of native heat-stable enterotoxin Ip. These results demonstrate that heat-stable enterotoxin Ip(Lys-11) and heat-stable enterotoxin Ip(Arg-11) lose enterotoxicity but retain epitopes which are common to native heat-stable enterotoxin Ip.  相似文献   

5.
The binding of 125I-labeled Escherichia coli heat-stable enterotoxin B to rat intestinal epithelial cells was unsaturable and nonspecific, at concentrations well above that required to mediate biological events. Following its interaction with intestinal cells, approximately 50-80% of heat-stable enterotoxin B remained stably associated with the cells, implying that it was partitioned into the membrane and/or internalized by the cell. The toxin bound with different affinities to lipids isolated from intestinal epithelial cells, phospholipids, glycolipids, neutral lipids and to model membrane vesicles containing negatively charged lipids. These results indicate that heat-stable enterotoxin B utilizes the membrane bilayer, rather than a surface protein or glycoprotein in modulating toxin-induced enterotoxicity.  相似文献   

6.
Two variants of Escherichia coli heat-stable enterotoxin Ip, in which the amino acid residue at position 11 was substituted with lysine or arginine, were purified to near homogeneity from the culture supernatants of toxin-producing mutant strains. Neither the purified heat-stable enterotoxin Ip(Lys-11) nor the purified heat-stable enterotoxin Ip(Arg-11) showed a positive response in the suckling mouse assay or in the mouse intestinal loop assay. Furthermore, live bacteria producing these mutant heat-stable Ip enterotoxins did not cause fluid accumulation in mouse intestinal loops, in contrast to bacteria producing native heat-stable enterotoxin Ip. Nevertheless, antisera raised against both heat-stable enterotoxin Ip(Lys-11) and heat-stable enterotoxin Ip(Arg-11) neutralized the enterotoxic activity of native heat-stable enterotoxin Ip. These results demonstrate that heat-stable enterotoxin Ip(Lys-11) and heat-stable enterotoxin Ip(Arg-11) lose enterotoxicity but retain epitopes which are common to native heat-stable enterotoxin Ip.  相似文献   

7.
Abstract A GM1-ELISA for detection of the methanol soluble, heat-stable enterotoxin (STa) produced by many enterotoxinogenic E. coli strains has been developed. This ST-GM1-ELISA, which is based on inhibition of binding of anti-ST antibody to GM1-bound ST-cholera B subunit conjugates, is relatively simple and possible to perform with stable reagents and without any complicated equipment. By this method STa could be detected in culture filtrates of human E. coli isolates with 100% sensitivity and specificity. The sensitivity of the method for purified ST is considerably higher than that of the conventional infant mouse test and comparable to that of recently described radioimmunoassays for ST.  相似文献   

8.
Guanylyl cyclase is a heat-stable enterotoxin receptor.   总被引:50,自引:0,他引:50  
S Schulz  C K Green  P S Yuen  D L Garbers 《Cell》1990,63(5):941-948
Plasma membrane forms of guanylyl cyclase have been shown to function as natriuretic peptide receptors. We describe a new clone (GC-C) encoding a guanylyl cyclase receptor for heat-stable enterotoxin. GC-C encodes a protein containing an extracellular amino acid sequence divergent from that of previously cloned guanylyl cyclases; however, the protein retains the intracellular protein kinase-like and cyclase catalytic domains. Expression of GC-C in COS-7 cells results in high guanylyl cyclase activity. In addition, heat-stable enterotoxin from E. coli, but not natriuretic peptides, causes marked elevations of cyclic GMP and is specifically bound by cells transfected with GC-C. The enterotoxin fails to elevate cyclic GMP in nontransfected cells or in cells transfected with the natriuretic peptide/guanylyl cyclase receptors. These results show that a heat-stable enterotoxin receptor responsible for acute diarrhea is a plasma membrane form of guanylyl cyclase.  相似文献   

9.
A heat-stable enterotoxin was isolated and purified from the culture supernatant of Yersinia enterocolitica by reversed-phase high-performance liquid chromatography. The amino acid sequence of the purified toxin was determined to be as follows: Gln-Ala-Cys(X)-Asp-Pro-Pro-Ser-Pro-Pro-Ala-Glu-Val-Ser-Ser-Asp-Trp-Asp-Cys-Cys-Asp-Val-Cys-Cys-Asn-Pro-Ala-Cys-Ala-Gly-Cys (X: not determined). The C-terminal sequence containing 6 half-cystine residues was highly homologous to that of heat-stable enterotoxin of enterotoxigenic Escherichia coli.  相似文献   

10.
Aims:  To find out the prevalence of different serogroups of Escherichia coli ( E. coli ) and to detect heat-stable (ST) and heat-labile (LT) enterotoxin genes of enterotoxigenic E. coli (ETEC) from the faeces of mithun calves with diarrhoea.
Methods and Results:  Faecal samples obtained from 65 diarrhoeic mithun calves of under 2 months of age were examined for E. coli using polymerase chain reaction (PCR). Fifty-four E. coli isolates were obtained from those samples, which belonged to 38 different serogroups. Out of 54 isolates tested by PCR, two isolates (3·70%) belonging to serogroups O26 and O55 were found to possess gene that code for ST enterotoxin and one isolate (1·85%) belonging to serogroup O125 was found to carry LT enterotoxin gene.
Conclusions:  Escherichia coli isolates from diarrhoeic mithun calves were found to possess ST and LT enterotoxin genes, which are designated as ETEC, and these isolates can be detected through PCR using specific primers.
Significance and Impact of the Study:  This study reports the isolation of ETEC possessing ST and LT enterotoxin genes for the first time and ETEC could be a cause of diarrhoea in mithun calves leading to calf mortality.  相似文献   

11.
Abstract Enterotoxigenic Escherichia coli isolated from diarrhea stools of chickens were examined for production of heat-stable enterotoxin II which is considered to be implicated only in diarrhea of pigs. Seven out of 38 strains examined were found to contain heat-stable enterotoxin II gene, determined by colony hybridization and the polymerase chain reaction. The culture supernatants of these strains caused fluid accumulation in the mouse intestinal loop test. This fluid accumulation activity was not lost by heating at 100°C and was neutralized by anti-heat-stable enterotoxin II antiserum. Purified heat-stable enterotoxin II caused fluid accumulation in the chicken intestinal loop assay. These results indicate that STII-producing E. coli is implicated in chicken diarrhea.  相似文献   

12.
将毒素原性大肠杆菌(ETEC)编码耐热肠毒素(ST)的基因片段与编码热敏肠毒素B亚基(LT—B)的基因进行融合,并在此基础上进行不同数目ST基因的串联。ELISA检测融合基因表达蛋白产物,观察到ST与LT-B之间存在着相互影响。ST的检测滴度随基因串联个数增加而逐渐升高,而LT的ELISA滴度则减弱。本研究说明ST可以通过基因串联提高表达产物抗原活性。这为毒素原性大肠杆菌多价疫苗的研制提供了重要的研究基础。  相似文献   

13.
Exposure of enterotoxigenic Escherichia coli strains to a sublethal concentration (0.75 mg/liter) of copper for 3 days at 4 degrees C induced sensitivity to deoxycholate (0.1%). When placed in a complex (brain heart infusion) or a defined amino acid salt medium, the copper-injured cells recovered their tolerance to deoxycholate in 3 and 6 h, respectively, and commenced active growth. Growth and heat-stable enterotoxin production of uninjured and copper-injured cells were studied in brain heart infusion medium. A slightly altered growth curve and an initial slow rate of toxin production were observed in injured cells when compared with those corresponding uninjured controls. However, maximum heat-stable enterotoxin levels in injured cultures were comparable to those produced by uninjured cells, suggesting that the enterotoxigenic potential of copper-injured cells was fully retained.  相似文献   

14.
Exposure of enterotoxigenic Escherichia coli strains to a sublethal concentration (0.75 mg/liter) of copper for 3 days at 4 degrees C induced sensitivity to deoxycholate (0.1%). When placed in a complex (brain heart infusion) or a defined amino acid salt medium, the copper-injured cells recovered their tolerance to deoxycholate in 3 and 6 h, respectively, and commenced active growth. Growth and heat-stable enterotoxin production of uninjured and copper-injured cells were studied in brain heart infusion medium. A slightly altered growth curve and an initial slow rate of toxin production were observed in injured cells when compared with those corresponding uninjured controls. However, maximum heat-stable enterotoxin levels in injured cultures were comparable to those produced by uninjured cells, suggesting that the enterotoxigenic potential of copper-injured cells was fully retained.  相似文献   

15.
16.
人干扰素α-2b原始基因在重组原核工程菌中表达量偏低,所以我们在不改变干扰素原有氨基酸组成的前提下,根据大肠杆菌密码子偏爱性使用定向突变技术对huIFNα-2b基因进行点突变。将大肠杆菌STⅡ信号肽基因与突变后huIFNα-2b基因融合并于信号肽5′端和huIFNα-2b基因3′端引入合适的酶切位点。融合基因克隆至载体pCSE,pET-22b和pPAK4L中,此3种载体分别含有组成型启动子、T7启动子和phoA启动子。融合基因在载体pCSE中表达量很低,其中约有50%的目标蛋白能够成功实现分泌。在E.coliBL21中,pET-22b经过IPTG诱导可以实现huIFNα-2b的高表达,但STⅡ信号肽不能被有效切除。含有phoA启动子的载体pPAK4L其在E.coliW3110中可以实现huIFNα-2b较高水平的分泌表达,经过低磷诱导其表达量最高可至20μg/mL(A550)菌液,约有30%的目标蛋白质信号肽能够被成功切除并分泌到胞间质中。  相似文献   

17.
The activities of intestinal brush border membrane (BBM) enzymes alkaline phosphatase, maltase, lactase, sucrase, gamma-glutamyl transpeptidase and leucine aminopeptidase were determined in intestinal homogenates and purified BBMs from control, heat-stable and heat-labile enterotoxin treated mice. The activities of all the enzymes except lactase were decreased significantly (p less than 0.01) in homogenates while increased significantly (p less than 0.001) in BBMs of experimental groups as compared to controls. Calmodulin activities were increased significantly (p less than 0.01) as compared to control in heat-stable enterotoxin treated mice but remained unaltered in heat-labile enterotoxin treated mice. DNA contents of intestinal homogenates were decreased in experimental groups demonstrating the decrease in cell number in these groups. The altered BBM enzyme activities could not be attributed to changes in calmodulin activities. The increase in enzyme activities in BBMs may reflect a compensatory phenomenon in the remaining cells.  相似文献   

18.
Guanylyl cyclase (GC)-C, a single-transmembrane receptor protein for heat-stable enterotoxin, guanylin, and uroguanylin, and its N-terminal extracellular domain were prepared at a high level of expression from a system constructed of Sf21 insect cells and recombinant baculovirus. The recombinant GC-C, containing the complete sequence, retained its binding affinity to heat-stable enterotoxin with a KD value (6.2 x 10(-10) M) and cyclase catalytic activity at a level similar to those of GC-C expressed in mammalian cell lines, such as COS-7. The N-terminal extracellular domain was prepared in a form which contained the hexahistidine tail at its C-terminus and was purified as a homogenous protein by Con A and Ni-chelating affinity chromatography from the culture medium of the insect cells. The purified N-terminal extracellular domain of GC-C exhibited the high (KD = 4 x 10(-10) M) and low (KD = 7 x 10(-8) M) affinity sites in binding to heat-stable enterotoxin. These results clearly indicate that the N-terminal extracellular domain of GC-C possesses the same biochemical characteristics as the complete GC-C protein even in the membrane-free form. Moreover, the extracellular domain is able to form an oligomer in a ligand-dependent manner, suggesting that the N-terminal extracellular domains interact with one another in binding to ligands.  相似文献   

19.
Some enteric strains of Escherichia coli release a heat-stable enterotoxin which, in contrast to cholera and heat-labile E. coli enterotoxins, stimulates guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2). We have exmined the tissue specificity of its action and the relation of its action to those of the 8-bromo analogues of cyclic GMP and cyclic AMP. Heat-stable enterotoxin stimulated guanylate cyclase activity and increased cyclic GMP oncentration throughout the small and large intestine. It increased transepithelial electric potential difference and short-circuit current in the jejunum, ileum and caecum but not in the duodenum or distal colon. This pattern of electrical responses was mimicked by 8-bromo-cyclic GMP. However, 8-bromo-cyclic AMP produced an electrical response in all intestinal segments. The enterotoxin failed to stimulate guanylate cyclase in liver, lung, pancreas or gastric antral mucosa. In the intestines, it stimulated only the particulate and not the soluble form of the enzyme. Preincubation of the toxin with intestinal membranes did not render it capable of stimulating pancreatic guanylate cyclase. Cytosol factors did not enhance the toxin's stimulation of intestinal guanylate cyclase. This study supports the role of cyclic GMP as intracellular mediator for heat-stable enterotoxin and suggests that the toxin affects a membrane-mediated mechanism for guanylate cyclase activation that is unique to the intestines.  相似文献   

20.
Ligated intestinal loops of mice were found suitable for the assay of heat-stable enterotoxin produced by enteropathogenic Escherichia coli strains of porcine origin; loops inoculated with heat-labile enterotoxin failed to react.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号