首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The association of the class II genes of the DRw10 haplotype from a cell line, NASC, initiated from a member of a well characterized family, was analyzed by sequencing cDNA clones corresponding to DR beta I, DQ alpha, and DQ beta genes. An identical haplotype was also identified in the Raji cell line. In addition to typing as DRw10 and DQw1 with HLA typing sera both, the NASC and Raji cell lines were shown to react strongly with the monoclonal antibodies 109d6 (specific for DRw10 beta 1 and DRw53 beta 2 gene products) and Genox 3.5.3 (specific for DQw1) and exhibited the restriction fragment length polymorphism indicative of a DRw10, DQw1 haplotype. The DR beta 1 gene corresponding to the DRw10 specificity was found to have a first domain sequence different from all other DR beta I genes. Sequence analysis of the 3'-untranslated region of this DR beta-chain gene showed a significant divergence from the 3' untranslated region of the DRw53 family of haplotypes and a lesser divergence from that of the DRw52 and DR1/DR2 families. The sequence of the DQ beta genes corresponding to the DQw1 specificity in the DRw10 haplotype was found to be identical to the DQ beta gene from a DR1, DQw1 haplotype. Surprisingly, however, the DQ alpha gene did not resemble other DQw1-like DQ alpha genes, but was identical in sequence to the DQ alpha gene found in DR4 haplotypes. The novel association of DQ alpha and DQ beta genes in the DRw10 haplotype revealed in these studies may result from a double recombinational event. More consequentially, these studies strongly suggest that the DQw1 specificity recognized by Genox 3.5.3 is determined by the DQ beta chain and is not affected by the DQ alpha-chain.  相似文献   

2.
The HLA-D region is composed of three subregions termed DR, DQ, and DP. We previously reported the sequence of a DR5 beta I and two DR5 beta III cDNA from the DR5 cell line Swei. We now report on the nucleotide and deduced amino acid sequence of the DQ alpha and DQ beta cDNA from the same DR5 cell line, which also types as DQw3. Comparison with other available DQ sequences indicates that DQ alpha has one region of major variability, whereas DQ beta appears to have four regions of variability. In addition, these comparisons indicate that DQw3 alpha from DR5 is different from DQw3 alpha from DR4, but identical to DQw2 alpha from DR3. In contrast, DQw3 beta from DR5 is very similar to DQw3 beta from DR4. These data indicate that at least for DQw2 and DQw3 it is the DQ beta chain that is responsible for DQ typing. Most sequence differences in DQ alleles can be attributed to point mutations; however, codon additions/deletions in the DQ alpha chain may contribute to variability. In addition, regions of possible gene conversion in the DQ alpha and DQ beta chains is suggested by the presence of a chi-like sequence in each chain. Finally, comparison of available haplotypes suggest recombination events may take place between DQ beta and DQ alpha, between DQ alpha and DR beta I, and between DR beta I and DR beta III.  相似文献   

3.
Histocompatibility leukocyte antigen DQ molecules exhibit polymorphism of both DQ alpha- and beta-chains. Histocompatibility leukocyte antigen-DQw3 is associated with both DR4 and DR5 and can be further subdivided by reactivity with the monoclonal antibody TA10. To determine the molecular nature of the DQ polymorphic alleles associated with the DR4 haplotype, we have sequenced and analyzed DQ alpha and beta cDNA clones obtained from a DR4, Dw4, DQw3 cell line which is TA10-positive. The DQ alpha-chain sequence was identical to previously published sequences from the DR4 haplotype, but the DQ beta sequence differed from published DR4-DQ beta sequences obtained from DQw3-positive TA10-negative cell lines by eight amino acids, six of which were located in the beta 1 domain. Thus, the TA10 serologic determinants reside on the DQ beta-chain. A TA10-specific oligonucleotide probe was constructed based on the DQ beta sequence, and its specificity was confirmed in a panel of TA10-positive and TA10-negative cell lines. An additional band was observed in Southern blotting experiments which may indicate a donor sequence for gene conversion.  相似文献   

4.
Recombination sites in the HLA class II region are haplotype dependent   总被引:3,自引:0,他引:3  
We have analyzed DNA sequence polymorphisms of DQ alpha and DQ beta chains from three haplotypes from the DRw52 family: DR5 DQw1 (FPA, GM3106), DRw6 DQw1 (CB6B, 10w9060), and DRw6 DQw3 (AMALA, 10w9064). The results indicate that the DR5 DQw1 and DRw6 DQw1 haplotypes have arisen by recombination between the DR beta 1 and DQ alpha loci. This contrasts with our previous analysis of DR4 DQ"Wa", DR3 DQ"Wa", and DR7 DQw3 haplotypes, all of which appear to have arisen by virtue of recombination between DQ alpha and DQ beta. Thus, there appear to be at least two different sites where recombination has occurred within the DR and DQ subregions. These differing patterns of recombination were interpreted in the context of the three major family groups of class II haplotypes, the DRw53, DRw52, and DR1/2 haplotype families. The data indicate that haplotypes from these family groups tend to undergo recombination at different locations. We propose that these differences in site of recombination are a reflection of differences in the molecular organization of the haplotypes belonging to each family group.  相似文献   

5.
We have compared the sequence polymorphism of HLA class II genes of two distinct DRw6 haplotypes. cDNA libraries were constructed from two lymphoblastoid cell lines: CB6B (10w9060) which types as DRw13 DQw1, and AMALA (10w9064) which types as DRw14 DQw3. Multiple sequence differences were found at the DR beta I, DQ alpha, and DQ beta loci when these two haplotypes were compared. The DR beta I allele found in the DRw14 DQw3 haplotype appears to have diverged primarily as a result of a gene conversion event with a DR1 allele acting as donor. In contrast, the DRw13 DQw1 haplotype appears to have arisen by means of a recombination event between the DR and DQ subregions. Thus, multiple genetic mechanisms, including point mutation, gene conversion, and recombination, have generated diversity among DRw6 haplotypes.  相似文献   

6.
Expressible HLA class II alpha- and beta-chain cDNA were used for DNA-mediated gene transfer to produce L cell transfectants expressing single types of human class II molecules. Cloned transfectants expressing nine different class II molecules were isolated: DR alpha: DR1 beta I, DR alpha: DR4 beta I, DR alpha: DR5 beta I, DR alpha: DR5 beta III (DRw52), DR alpha: DR7 beta I, DR alpha: DR4/7 beta IV (DRw53), DQ7 alpha: DQw2 beta, DQ7 alpha: DQw3 beta, and DPw4 alpha: DPw4 beta. These class II-expressing transfectants were used to analyze by flow cytometry the molecular specificities of 20 anti-class II mAb. These analyes indicate that some mAb are more broadly reactive than was previously thought based on immunochemical studies. In contrast, the narrow molecular specificities of other anti-class II mAb were confirmed by this approach. Transfectants expressing human class II molecules should be valuable reagents for studies of B cell and T cell defined epitopes on these molecules.  相似文献   

7.
Two-dimensional gel electrophoresis (2D-PAGE) of DR molecules from three different Dw subtypes (Dw2, Dw12, and FJO) of the HLA-DR2 haplotype reveals that at least two DR beta genes are expressed. Protein mixing experiments demonstrate that one of the two expressed DR beta molecules is electrophoretically variable (referred to as DR beta 1), and the other (DR beta 2) migrates constantly among DR2 subtypes. We have constructed cDNA libraries from Dw12 and FJO homozygous typing cells (HTC DHO for Dw12 and HTC FJO for FJO) and isolated DR beta cDNA clones. Four of these clones (FJO-13, DHO-8, FJO-6, and DHO-7) were sequenced, and the deduced amino acid sequences were compared with each other and with two published amino acid sequences for the DR beta molecules derived from a DR2-Dw2HTC. Prediction of the migration patterns on 2D-PAGE from the amino acid sequences of these and other DR beta molecules allows the tentative designation of the two full-length cDNA (DHO-8 and FJO-13) as coding for DR beta 2 molecules and the other two cDNA (DHO-7 and FJO-6) for DR beta 1 molecules. Amino acid sequence comparisons also show that the constantly migrating DR beta 2 molecules, as well as the electrophoretically variable DR beta 1 molecules, from Dw2, Dw12, and FJO have different primary amino acid sequences, including a clustered difference in the third hypervariable region of the polymorphic first domain.  相似文献   

8.
From a human cDNA library constructed from a consanguineous HLA-homozygous cell line, AKIBA (HLA-A24, Bw52, DR2, Dw12, DQw1, and Cp63) (Cp63, a new SB type), a cDNA clone encoding a new HLA class II antigen heavy chain named DQ alpha was isolated, and was analyzed by Southern blot hybridization and by nucleotide sequence determination. The nucleotide sequence of the DO alpha cDNA was distinct from those of the DR alpha, the DQ alpha, and the DP alpha cDNA, but showed some characteristic features of the class II antigen alpha-chains. We also isolated and identified genomic clones specifying the DO alpha gene. Genomic analyses of cell lines with different HLA-DR serotypes with the use of the DO alpha cDNA as a probe indicated the existence of a single DO alpha gene that exhibited little restriction enzyme polymorphism.  相似文献   

9.
The restriction fragment length polymorphisms have been determined for six restriction enzymes (Bam HI, Bg1 II, Eco RI, Hinc II, Hind III, and Pvu II) and a DQ beta probe on 25 cell lines that are homozygous by consanguinuity at the MHC. These patterns reflect both DR haplotypes and DQ types of the cells tested. At least one non-polymorphic band is present in all the cell lines with every restriction enzyme except Hinc II. This band most probably represents DX beta hybridization. The polymorphic bands indicate that more polymorphism exists in the DQ subregion than is predicted serologically. Each DR haplotype is associated with a unique set of restriction fragments except for DR2 and DR6. The patterns are largely consistent within each DR haplotype. In addition, some bands reflect the established DQ specificities DQw1 and DQw2. Individual bands can be identified that are unique to the haplotypes DR1, DR4, DR5, and DR6 and the DQw1- and DQw2-associated haplotypes. Subdivisions of haplotypes can be identified with this probe. In particular, MVL (DR1), Akiba (DR2), QBL (DR3), FPF (DR5), and APD (DR6) have polymorphisms that distinguish them from other members of their DR haplotype.  相似文献   

10.
Two major DR7 haplotypes have been defined on the basis of serologic typing: those that type as DQw2 and others that type as DQw3. In order to define the molecular basis for these serologic differences we have isolated and sequenced DQ alpha, DR beta I, and DQ beta cDNA clones from both representative haplotypes. These studies reveal that although the DQ alpha and DR beta I genes of both haplotypes are identical, the DQ beta genes are very different. These data suggest that the serologic differences of these two DR7 haplotypes are the result of a recombinational event that occurred between the DQ alpha and DQ beta genes. In addition, they emphasize the role of DQ recombination in generating "hybrid" HLA-DQ heterodimers.  相似文献   

11.
Cells from a mouse B lymphoma were transfected by DQ alpha and DQ beta genes derived from a DR4 haplotype. Quantitatively, the resulting expression of human class II molecules was similar to that of human B lymphoblastoid cell lines. Qualitatively, the transformant class II molecules differed from normal class II molecules in their carbohydrate moiety. As for their antigenic specificity, they were shown to carry two determinants previously identified on DQ molecules controlled by DR4 haplotypes, i. e., DQw3 and DCHON. The transformant molecules did not carry a third DR4-associated specificity, DC5 (equivalent to TA10), and must possess a structure allelic to DC5. However, no corresponding alloantigenic specificity was detected by a screening of relevant alloantisera.  相似文献   

12.
Human genomic DNA samples from Melanesians, Micronesians, and Caucasoids of known HLA-DR type were examined with cDNA probes for HLA-DR alpha, -DR beta, -DQ alpha, and -DQ beta chain genes. DR beta hybridizations with TaqI-digested DNA did not detect any new DR specificities in the Pacific. However, within the DR5 specificity a common DNA subtype was found in Pacific Islanders that was not seen in Caucasoids. Altogether, four DNA subtypes of DR5 are described. With the DQ alpha and DQ beta probes, significantly more variation could be demonstrated between populations. For example, DR2 was associated with a DQ beta TaqI pattern in the Pacific that was very rare in Caucasoids and additional RFLP analysis with other enzymes showed that this pattern is probably associated with the Dw12 subtype of DR2. DRw8-positive samples showed two different DQ alpha TaqI patterns, and these correlated with DQw1 and DQw3 specificities. DR alpha hybridizations with BglII-digested DNA also revealed different linkage relationships of the HLA-class II region genes between Pacific and Caucasoid specimens. The different population linkage disequilibrium relationships have permitted tentative assignment of TaqI fragments to either the DR beta 1 or DR beta 2 genes and are highly suggestive that the DQw1 specificity is encoded by the DQ alpha chain gene. This study shows the value of population comparisons in contributing to knowledge of the genetic organization of the genome.  相似文献   

13.
All three HLA class II families (DR, DQ, and DP) are involved in restriction of helper T cell (Th) recognition of nominal antigens including CMV. Only limited studies have been described previously to determine whether restricting determinants of DR and especially DQ are subtypic to the serologically defined DR and DQ specificities, and to what extent restricting determinants are associated with Dw specificities defined in alloresponses. In the present report, we describe a large number of CMV-specific Th clones derived from two different individuals who are seropositive for CMV. Clones were classified as being DR-, DQ-, or DP-reactive based on blocking with monoclonal antibodies. DR- and DQ-restricted clones were then examined in panel studies using antigen-presenting cells (APC) expressing the Dw subtype of the restricting DR-DQ haplotype, as well as APC expressing different Dw subtypes associated with the serologically defined specificity. Unrelated specificities were also included. Our findings show that not only for DR but for DQ as well, the primary restricting determinants appear to be subtypic to the serologically defined antigen; furthermore, subtype restriction for both DR and DQ is very closely associated with single Dw specificities. In several cases in which cross-reactivity among restricting Dw specificities was observed in association with a given DR or DQ haplotype, a molecular basis could be suggested to explain the cross-reacting determinants. A small minority of the clones appeared to be CMV specific, but was restricted by a determinant(s) that is either monomorphic or minimally polymorphic.  相似文献   

14.
Analysis of DR beta and DQ beta chain cDNA clones from a DR7 haplotype   总被引:3,自引:0,他引:3  
A cDNA library was constructed from a DR7, DRw53, DQw2 homozygous cell line, cDNA clones corresponding to DR beta and DQ beta chains were isolated, and the nucleotide sequences of the polymorphic first domains of these chains were determined. A novel screening strategy allowed rapid and simple identification of cDNA clones corresponding to both DR beta chains (DR7 beta1 and DR7 beta2): DR7 beta2 clones have a recognition site for the enzyme BssHII, whereas DR7 beta1 clones do not. The DR7 beta 1 sequence differs significantly from all previously described DR beta chains. As predicted by the presence of the BssHII site in DR7 beta 2 clones, the DR7 beta 2 sequence differs from the DR7 beta 1 sequence. The sequence of the DRw53-associated DR7 beta 2 chain is identical to the reported sequence of the DRw53-associated DR4 beta 2 chain. In addition, the sequence of the DQ beta chain from the DR7, DQw2 cell line is identical to the reported sequence of a DQ beta chain from a DR3, DQw2 cell. These findings raise interesting questions about the evolution of the DR3, DR4, and DR7 haplotypes.  相似文献   

15.
The HLA-associated susceptibility to develop celiac disease may to a large extent be attributed to the combination of particular DQA1 and DQB1 genes, i.e., the DQA1*0501 and DBQB1*0201 alleles, located either in cis position (on the DR3DQw2 haplotype) or in trans position (DR5DQw7/DR7DQw2 heterozygous individuals). We report three alloreactive T lymphocyte clones that recognize an HLA-DQ alpha/beta heterodimer both when the DQA1*0501 and DQB1*0201 alleles are located in cis or in trans position. Thus, the celiac disease associated DQA1 and DQB1 genes encode a functionally expressed DQ alpha/beta heterodimer.  相似文献   

16.
Bgl II restriction endonuclease digestion of genomic DNA from lymphoblastoid cell lines homozygous for HLA DR and DQ serological specificities, followed by hybridization with a DQ alpha cDNA probe, identified a genomic polymorphism characterized by two reciprocal patterns, one associated with DR 3, 5 and 8 and the other with DR 1, 2, 4, 7, and 9. The former pattern corresponded precisely to the reactivity of monoclonal antibody SFR20-DQ alpha 5, shown by Western blotting to react with isolated alpha-chains, but not with beta-chains. Additional variants of the DQ alpha genes were identified by using a locus-specific oligonucleotide probe for the DQ alpha gene, indicating differences among the DQ alpha 5-negative set of alleles. This analysis defines a set of DQ alpha allelic markers that are distinct from the well-established DQ serologic specificities DQw1, 2, 3 or "blank." Although most DQ alpha 5+ cells carry the DRw52 specificity associated with the DR beta 2 gene, analysis of DQ alpha polymorphisms on DR5, DQw1; DR8, DQw1; and DRw13, DQw1 cells verified that this DQ alpha family of alleles was not invariably linked to the DR beta 2 locus.  相似文献   

17.
The polymorphism of HLA class II molecules in man is particularly evident when comparisons between population groups are made. This study describes a DR3 haplotype commonly present in the American black population. Unlike the Northern European population in which almost all DR3 individuals are DQw2, approximately 50% of DR3-positive American blacks express a serologically undefined DQ allelic product. DNA restriction fragment analysis with the use of several unrelated individuals and an informative family has allowed us to identify unique DQ alpha- and beta-fragments associated with the DR3, DQw- haplotype. Based on fragment size, the DQ alpha genes of the DR3, DQw- and DRw8, DQw- haplotypes are similar as are the DQ beta genes of DR3, DQw-; DRw8, DQw-; and DR4, DQw- haplotypes. In addition, a DX beta gene polymorphism has been identified which is associated with some DR3 haplotypes including the American black DR3, DQw- haplotype. cDNA sequence analysis has revealed a DQw2-like alpha gene and a DQ beta gene which is similar to that previously described for a DR4, DQw- haplotype. It is postulated that recombination between DQ alpha and DQ beta genes and between the DQ and DX subregions has generated the various DR3 haplotypes and has played an important role in creating diversity in the HLA-D region.  相似文献   

18.
The human major histocompatibility complex includes the DP, DQ, and DR subregions, each of which contains at least one alpha chain gene and two beta chain genes. The products of the alpha chain gene and a beta chain gene from a given subregion combine to form a heterodimer which is found predominantly on the surface of immunocompetent cells, and is essential for effective cell-cell interactions and the generation of an immune response. The beta chain of the DR molecule is highly polymorphic, and it is this polymorphism which is thought to be ultimately responsible for the specific immune responsiveness and disease predisposition conferred by different DR molecules. While the sequences of DR beta chains of the homozygous DR1 cells, homozygous DR2, homozygous DR4, DR3/w6 cells and DR4/w6 genotypes have been partially or completely characterized, no sequence is yet available for the DR beta chain from a homozygous DR5 cell. A cDNA library was therefore constructed from the Swei cell line homozygous for the DR5 haplotype. A beta chain clone was isolated, characterized, and sequenced. Comparison with previously published DR beta chain restriction endonuclease maps and nucleotide sequences demonstrated that this clone was a DR beta chain clone. Comparison of the deduced amino acid sequence with other DR beta chain amino acid sequences shows three regions of variability in the first external domain, corresponding to amino acid residues 9-13, 26-38, and 67-74. The sequence of each of these variable regions in the beta chain from DR5 cells was identical or nearly identical to the sequences of variable regions found in the beta chains of other DR haplotypes, supporting the notion of gene conversion as an evolutionary mechanism generating polymorphism. The second external domain, and transmembrane and intracytoplasmic regions show a high degree of sequence conservation.  相似文献   

19.
DQw6b transgenic mice have been generated by microinjecting a linearized cosmid clone containing 34-kb DQb genomic DNA, isolated from HLA-homozygous B cell line AKIBA (DR2, Dw12, DQw6), into embryos of (CBA x B10.M)F2 or (SWR x SJL)F2. Among 85 mice screened, eight mice were transgene-positive. The transgene in seven of eight founders was germline-transmitted. FACS analysis and immunohistochemical studies with DQ beta-specific mAb demonstrated that DQ beta molecules in association with mouse A alpha f molecules are expressed on peripheral mononuclear cells, spleen cells, and in thymic medulla. More interestingly, V beta 11-, V beta 5.1-, and V beta 5.2-bearing T cells, but not V beta 8.2-bearing T cells, were clonally deleted in the H-2E-negative but DQ beta+ progeny of two selected founders (260-23 and 258-10). The deletion was found to take place intrathymically during the transition stage from immature to mature thymocyte development. We postulate that although human DQ genes are more homologous to mouse H-2A genes, A alpha f/DQ beta hybrid molecules may possess the same self-peptide- (or superantigen)-presenting epitope as E alpha/E beta molecules critical for deletion of V beta 11-, V beta 5.1-, and V beta 5.2-bearing T cells in thymus. Our results also confirm the previous findings that accessory molecules on thymocytes such as CD4 may be involved in thymic selection, and further suggest that an interaction of mousE CD4 and mouse A alpha chain is required for the clonal deletion.  相似文献   

20.
By using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), we investigated the difference in the HLA class II molecule between HLA-Dw2 and Dw12, both of which are typed as HLA-DR2 serologically. The anti-HLA-DR framework monoclonal antibody (MoAb) HU-4 precipitated an alpha-chain and two beta-chains of human class II molecules from both Dw2 and Dw12 homozygous B lymphoblastoid cell lines. It was demonstrated clearly that an alpha-chain (alpha 1) and one of the beta-chains (beta 1) showed no difference in mobility in the 2D-PAGE between Dw2 and Dw12, but that another beta chain (beta 2) of Dw2 was distinct from that of Dw12 in the 2D-PAGE profile. Thus, MoAb HU-4 precipitated alpha 1 beta 1 and alpha 1 beta 2 molecules from Dw2 and Dw12, and the alpha 1 beta 1 molecule appears to be an HLA-DR2 molecule. The alpha 1 beta 2 molecule, on the other hand, is a class II molecule distinct from those precipitated with anti-DR2, anti-DQw1 (DC1, MB1, MT1), or anti-FA MoAbs. MoAb HU-4 completely inhibited the mixed lymphocyte culture reaction (MLR) between Dw2 and Dw12, but anti-DR2 MoAb HU-30, which reacts only with the alpha 1 beta 1 molecule, did not show an inhibitory effect on the MLR between Dw2 and Dw12. The alpha 1 beta 2 molecule is therefore the molecule which elicits MLR between Dw2 and Dw12. An IL 2-dependent T cell line established from an HLA-Dw12/D blank heterozygous high responder to the streptococcal cell wall antigen (SCW) clearly distinguished the Dw2 specificity from Dw12 specificity expressed on the antigen-presenting cell (APC). Moreover, MoAb HU-4 markedly inhibited the cooperation between the T cell line and APC to respond to SCW. These observations indicate that the alpha 1 beta 2 molecule is recognized as a restriction molecule by the T cell line at the antigen presentation of SCW through APC MoAb HU-30 on the other hand partially inhibited the MLR between Dw2 or Dw12 homozygous cell as a stimulator cell and non DR2 cell as a responder cell. It markedly inhibited the proliferative response of the Dw12/D- heterozygous T cell line to SCW, presented by Dw2+ but Dw12- allogeneic APC, and the peripheral response of Dw2 or Dw12 homozygous peripheral blood lymphocytes to SCW. Thus, two distinct class II molecules encoded by the genes within the HLA-DR subregion of HLA-Dw2 and Dw12 can act as stimulating molecules in the MLR and as restriction molecules in the antigen presentation by APC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号