首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imidodiphosphate (the pyrophosphate analog containing a nitrogen atom in the bridge position instead of oxygen) is a potent inhibitor of family II pyrophosphatases from Streptococcus mutans and Streptococcus gordonii (inhibition constant Ki approximately 10 microM), which is slowly hydrolyzed by these enzymes with a catalytic constant of approximately 1 min(-1). Diphosphonates with different substituents at the bridge carbon atom are much less effective (Ki = 1-6 mM). The value of Ki for sulfate (a phosphate analog) is only 12 mM. The inhibitory effect of the pyrophosphate analogs exhibits only a weak dependence on the nature of the metal ion (Mn, Mg, or Co) bound in the active site.  相似文献   

2.
Substituted methylene diphosphonates are effective inhibitors of the RNA polymerase of influenza A virus causing 50% inhibition of the polymerase activity when they are present in the concentration range 10-85 microM. The inhibitory power of the methylene diphosphonates appears to be related to their ability to chelate with metal ions.  相似文献   

3.
Based on the primary structure, soluble inorganic pyrophosphatases can be divided into two families which exhibit no sequence similarity to each other. Family I, comprising most of the known pyrophosphatase sequences, can be further divided into prokaryotic, plant and animal/fungal pyrophosphatases. Interestingly, plant pyrophosphatases bear a closer similarity to prokaryotic than to animal/fungal pyrophosphatases. Only 17 residues are conserved in all 37 pyrophosphatases of family I and remarkably, 15 of these residues are located at the active site. Subunit interface residues are conserved in animal/fungal but not in prokaryotic pyrophosphatases.  相似文献   

4.
Kinetics was studied for the alkaline phosphatase activity inhibition by diphosphonic acids. When the ratio of Mg2+ and substrate (S) concentrations [( Mg2+]/[S]) is equal to 10, the process constants for methylene diphosphonic, amino methylene diphosphonic and hydroxyethylidene diphosphonic acids are 0.14, 0.12 and 0.35 mM, respectively. The inhibition is of competitive character. An increase in the Mg2+ concentration to the [Mg2+]/[S] = 40 ratio lowers the inhibition degree for all three diphosphonates; it follows a mixed mechanism. Thus, the inhibition of the alkaline phosphatase activity by diphosphonic acids is due to both competition of the inhibitor for the enzyme active centre and a decrease in the Mg2+ concentration, the phosphatase activator, because of Mg2+ complexing with diphosphonates.  相似文献   

5.
6.
The properties of a highly purified inorganic pyrophosphatase (pyrophosphate phosphohydrolase; EC 3.6.1.1) from pig scapula cartilage were studied. The enzyme had a molecular weight of 66 000 and a pH optimum of 7-8. It was markedly activated by magnesium, but not, or only to a much smaller degree, by other metal ions. PP1 was the only substrate found and had a Km value of 11 muM. The enzyme was not inhibited by phosphate and other inhibitors of alkaline phosphatase such as CN- minus, amino acids and theophylline; it was slightly inhibited by tartrate, formaldehyde and ammonium molybdate and strongly inhibited by F- minus, Ca2+ and other metal ions. The properties of the enzyme in the presence of concentrations of PP1 present in plasma (3.5 muM) were similar to those found at higher (2 mM) concentrations of PP1. The diphosphonates ethane-1-hydroxy-1,1-diphosphonate and dichloromethylenediphosphonate inhibited the enzyme in the presence of low PP1 concentrations. The characteristics of this enzyme are therefore similar to pyrophosphatases from other sources, such as from yeast and erythrocytes, and do not support a specific role of this enzyme in the calcification process.  相似文献   

7.
1. The effects of two diphosphonates (compounds containing a P-C-P bond), disodium dichloromethanediphosphonate and disodium 1-hydroxyethane-1,1-diphosphonate, on the metabolism of cultured rat calvaria cells, rabbit ear cartilage cells and rat skin fibroblasts were investigated. 2. The diphosphonates had no effect on the growth of cartilage cells and on the exponential growth of the calvaria cells and the fibroblasts. However, dichloromethanediphosphonate stopped the growth of the calvaria cells and the fibroblasts after the beginning of confluence, whereas the untreated cells were still growing to a certain extent. This inhibition was dose-dependent. After the drug was withdrawn, the cells recovered slowly. 1-Hydroxyethane-1,1-diphosphonate had no detectable effect on the growth of any of the cell types studied. Both diphosphonates decreased the cloning efficiency of calvaria cells and fibroblasts. 3. The K+ content of cartilage, calvaria and skin cells was diminished only by the highest (0.25 mM) concentration of dichloromethanediphosphonate. 4. Radioactive dichloromethanediphosphonate and 1-hydroxyethane-1,1-diphosphonate were taken up linearly with time for at least 48 h by calvaria cells and fibroblasts. The diphosphonate concentration in the cells depended on its concentration in the medium. 5. Both diphosphonates, in a dose-dependent fashion, markedly inhibited glycolysis, dichloromethanediphosphonate being more effective than 1-hydroxyethane-1,1-diphosphonate, at drug doses that had no effect on cell growth or cellular K+ content. Calvaria cells were much more sensitive than cartilage cells. When cartilage cells were cultured in an N2 atmosphere, these effects on glucose and lactate metabolism disappeared. 6. As increased acid production appears to be associated with resorption of bone, this decrease in lactate may explain why diphosphonates are effective inhibitors of bone resorption in vivo.  相似文献   

8.
The effects of divalent cations, especially Ca2+ and Mg2+, on the proton-translocating inorganic pyrophosphatase purified from mung bean vacuoles were investigated to compare the enzyme with other pyrophosphatases. The pyrophosphatase was irreversibly inactivated by incubation in the absence of Mg2+. The removal of Mg2+ from the enzyme increased susceptibility to proteolysis by trypsin. Vacuolar pyrophosphatase required free Mg2+ as an essential cofactor (K0.5 = 42 microM). Binding of Mg2+ stabilizes and activates the enzyme. The formation of MgPPi is also an important role of magnesium ion. Apparent Km of the enzyme for MgPPi was about 130 microM. CaCl2 decreased the enzyme activity to less than 60% at 40 microM, and the inhibition was reversed by EGTA. Pyrophosphatase activity was measured under different conditions of Mg2+ and Ca2+ concentrations at pH 7.2. The rate of inhibition depended on the concentration of CaPPi, and the approximate Ki for CaPPi was 17 microM. A high concentration of free Ca2+ did not inhibit the enzyme at a low concentration of CaPPi. It appears that for Ca2+, at least, the inhibitory form is the Ca2(+)-PPi complex. Cd2+, Co2+ and Cu2+ also inhibited the enzyme. The antibody against the vacuolar pyrophosphatase did not react with rat liver mitochondrial or yeast cytosolic pyrophosphatases. Also, the antibody to the yeast enzyme did not react with the vacuolar enzyme. Thus, the catalytic properties of the vacuolar pyrophosphatase, such as Mg2+ requirement and sensitivity to Ca2+, are common to the other pyrophosphatases, but the vacuolar enzyme differs from them in subunit mass and immunoreactivity.  相似文献   

9.
Deoxyfuconojirimycin (1,5-dideoxy-1,5-imino-L-fucitol) is a potent, specific and competitive inhibitor (Ki 1 x 10(-8) M) of human liver alpha-L-fucosidase (EC 3.2.1.51). Six structural analogues of this compound were synthesized and tested for their ability to inhibit alpha-L-fucosidase and other human liver glycosidases. It is concluded that the minimum structural requirement for inhibition of alpha-L-fucosidase is the correct configuration of the hydroxy groups at the piperidine ring carbon atoms 2, 3 and 4. Different substituents in either configuration at carbon atom 1 (i.e. 1 alpha- and beta-homofuconojirimycins) and at carbon atom 5 may alter the potency but do not destroy the inhibition of alpha-L-fucosidase. The pH-dependency of the inhibition by these amino sugars suggests very strongly that inhibition results from the formation of an ion-pair between the protonated inhibitor and a carboxylate group in the active site of the enzyme. Deoxymannojirimycin (1,5-dideoxy-1,5-imino-D-mannitol) is also a more potent inhibitor of alpha-L-fucosidase than of alpha-D-mannosidase. This can be explained by viewing deoxymannojirimycin as beta-L-homofuconojirimycin lacking the 5-methyl group. Conversely, beta-L-homo analogues of fuconojirimycin can also be regarded as derivatives of deoxymannojirimycin. This has permitted deductions to be made about the structural requirements of inhibitors of alpha- and beta-D-mannosidases.  相似文献   

10.
Soluble inorganic pyrophosphatases of five species of nonsulfur purple bacteria were investigated in respect to reaction kinetics, regulatory behavior, and other characteristics. The enzymes appear to fall into two groups with correlated properties. The pyrophosphatases of Rhodopseudomonas capsulata and R. spheroides have molecular weights of approximately 60,000, are stabilized by Co(2+), and exhibit simple Michaelis-Menten reaction kinetics. On the other hand, the enzymes of R. palustris, R. gelatinosa, and Rhodospirillum rubrum are larger (molecular weight approximately 100,000), require Zn(2+) for maintenance of catalytic activity, and show complex reaction kinetics; these pyrophosphatases are activated by free Mg(2+) ions and, in the absence of the latter, are inhibited by 2-phosphoglyceric acid. The results described indicate the existence of alternative control patterns for regulation of intracellular turnover of phosphate, which is in part mediated by pyrophosphatases.  相似文献   

11.
Inhibition of inorganic pyrophosphatase of animal mitochondria by calcium   总被引:1,自引:0,他引:1  
Calcium ion is an uncompetitive inhibitor of the inorganic pyrophosphatases of bovine heart and rat liver mitochondria with respect to substrate MgPPi at pH 8.5 and a non-competitive inhibitor of the former enzyme at pH 7.2. The concentration of Ca2+ required to decrease the maximal velocities for both enzymes at pH 8.5, 0.4 mM Mg2+ was about 10 microM. The inhibition results from the binding of two Ca2+ ions to both free enzymes and their complexes with the substrate. The results suggest that Ca2+ regulates pyrophosphatase activity and hence PPi level in mammalian mitochondria.  相似文献   

12.
B J Lemon  J W Peters 《Biochemistry》1999,38(40):12969-12973
A site for the binding of exogenously added carbon monoxide has been identified at the active site of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum. The binding and inhibition of carbon monoxide have been exploited in biochemical and spectroscopic studies to gain mechanistic insights. In the present study, we have taken advantage of the ability to generate an irreversibly carbon monoxide bound state of CpI. The crystallization and structural characterization of CpI inhibited in the presence of carbon monoxide indicates the addition of a single molecule of carbon monoxide. The ability to generate crystals of the carbon monoxide bound state of the hydrogenase that are isomorphous to those of the native enzyme has allowed for a direct comparison of the crystallographic data and an unambiguous identification of the site of carbon monoxide binding at the active site of CpI. Carbon monoxide binds to an Fe atom of the 2Fe subcluster at the site of a terminally bound water molecule in the as crystallized native state of CpI that has been previously suggested to be a potential site of reversible hydrogen oxidation. Binding of carbon monoxide at this site results in an active site that is coordinately saturated with strong ligands (S, CO, and CN), providing a rational potential mechanism for inhibition of reversible hydrogen oxidation at the active site of CpI.  相似文献   

13.
Like EDTA, diphosphonates increase permeability of the frog urinary bladder wall for water osmotic gradient. Their effect is proportional to the stability of their binding with calcium ions. The efficacy of diphosphonates falls upon pH decline. The results indicate the significance of Ca binding in cells and membrane action of diphosphonates.  相似文献   

14.
In rats fed orotic acid, the incorporation in liver subcellular fractions of sugars injected intraperitonealy is altered only for mannose, but not for fucose or galactose. Direct determinations of several glycosyltransferases are done in smooth and rough microsomes: fucosyl-, glactosyl-, N-acetylglucosaminyltransferase activities are at quite similar levels in normal and fatty livers. By contrast, sialyltransferase activity is increased (+50%) in smooth microsomes of fatty livers, while mannosyltransferase activity is inhibited by 30%. These alterations are not caused by interfering reactions pyrophosphatases or proteases). For the mannosyltransferase activity, the inhibition is found in the dolichylphorylmannose intermediates. Kinetic studies suggest that there is deficiency of both enzyme and endogenous dolichyl phosphate.  相似文献   

15.
The earliest known H+-proton-pumping inorganic pyrophosphatase, the integrally membrane-bound H+-proton-pumping inorganic pyrophosphate synthase from Rhodospirillum rubrum, is still the only alternative to H+-ATP synthase in biological electron transport phosphorylation. Cloning of several higher plant vacuolar H+-proton-pumping inorganic pyrophosphatase genes has led to the recognition that the corresponding proteins form a family of extremely similar proton-pumping enzymes. The bacterial H+-proton-pumping inorganic pyrophosphate synthase and two algal vacuolar H+-proton-pumping inorganic pyrophosphatases are homologous with this family, as deduced from their cloned genes. The prokaryotic and algal homologues differ more than the H+-proton-pumping inorganic pyrophosphatases from higher plants, facilitating recognition of functionally significant entities. Primary structures of H+-proton-pumping inorganic pyrophosphatases are reviewed and compared with H+-ATPases and soluble proton-pumping inorganic pyrophosphatases.  相似文献   

16.
Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the sn-2-fatty acid of lecithin to cholesterol, forming lysolecithin and cholesteryl ester. We have recently proposed a covalent catalytic mechanism for LCAT in which lecithin cleavage proceeds via the formation of a transition state tetrahedral adduct between the oxygen atom of the catalytic serine residue and the sn-2-carbonyl carbon atom of the substrate (Jauhiainen, M., Ridgway, N.D., and Dolphin, P.J. (1987) Biochim. Biophys. Acta 918, 175-188). This proposal is evaluated here by use of nonhydrolyzable sn-2-difluoroketone phosphatidylcholine analogues, known to inhibit calcium-dependent phospholipase A2. These compounds inhibited the calcium-independent phospholipase A2 activity of LCAT in a time and concentration dependent manner. The most potent analogues had a 100-fold higher affinity for the enzyme than the substrate, lecithin, when present within lecithin/apoA-I proteoliposomes. The inhibition was dependent upon the presence of a difluoromethylene group alpha to the sn-2-carbonyl carbon of the analogues. The inhibition is attributed to the formation of a tetrahedral adduct between the catalytic serine residue of LCAT and the sn-2-carbonyl carbon atom of the analogues which is stabilized by the electronegative fluorine atoms present upon the carbon atom alpha to the carbonyl carbon. This adduct mimics that proposed by us to occur during lecithin cleavage by LCAT, and the data substantiate the existence of this transition state adduct prior to the release of lysolecithin and formation of a fatty acylserine oxyester of the enzyme.  相似文献   

17.
1. Cultured calvaria cells oxidized palmitate and octanoate to CO2 and water-soluble products. 2. When these cells were treated for 6 days with 0.025 and 0.25 mM-dichloromethanediphosphonate, oxidation of palmitate was increased, whereas that of octanoate was influenced less. 3. When the rate of oxidation was raised by increasing the palmitate concentration in the medium, the effect of the diphosphonate was decreased and finally disappeared. 4. 1-Hydroxyethane-1,1-diphosphonate had only minor effects. 5. The increase in palmitate oxidation appeared 2 days after the addition of dichloromethanediphosphonate, simultaneously with a fall in lactate production. (Inhibition of glycolysis by diphosphonates has already been shown.) 6. Cycloheximide, an inhibitor of protein synthesis, did not influence the effect of dichloromethanediphosphonate on the oxidation of palmitate and the production of lactate. 7. Cells cultured with dichloromethanediphosphonate showed a faster uptake of palmitic acid than did control cells. However, this observation did not explain the increased palmitate oxidation, since uptake was much faster than oxidation, and was therefore not the rate-limiting step. 8. 2-Bromopalmitate, an inhibitor of fatty acid oxidation, did not influence the inhibition of glycolysis by the diphosphonates. This inhibition, therefore, did not result from the increased oxidation of palmitate. It is also unlikely that the increased oxidation of palmitate is connected with the inhibition of glycolysis.  相似文献   

18.
Six glycosyltransferases (mannosyl-, glucosyl-, N-acetyl-glucosaminyl-, galactosyl-, sialyl- and fucosyltransferases) are studied and characterized for their optimal conditions and their relations with interfering reactions (glycosyl-nucleotide pyrophosphatases, glycosidases and proteinases) in chondrocytes from osteoarthritic and normal human articular cartilage. Osteoarthritis induces increased activities for five glycosyl-transferases. The observed modifications are not explained by alterations in physico-chemical parameters of the enzymes or by intervention of glycosyl-nucleotide pyrophosphatases, glycosidases or proteolytic enzymes.  相似文献   

19.
Soluble inorganic pyrophosphatases (inorganic diphosphatases, EC 3.6.1.1) were isolated and characterized from three phylogenetically diverse cyanobacteria--Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120, and Pseudanabaena sp. PCC 6903--and one anoxygenic photosynthetic bacterium, Rhodopseudomonas viridis (purple nonsulfur). These enzymes were found to be family I soluble inorganic pyrophosphatases with c. 20 kDa subunits with diverse oligomeric structures. The corresponding ppa genes were cloned and functionally validated by heterologous expression. Cyanobacterial family I soluble inorganic pyrophosphatases were strictly Mg(2+)-dependent enzymes. However, diverse cation cofactor dependence was observed for enzymes from other groups of photosynthetic bacteria. Immunochemical studies with antibodies to cyanobacterial soluble inorganic pyrophosphatases showed crossreaction with orthologs of other main groups of phototrophic prokaryotes and suggested a close relationship with the enzyme of heliobacteria, the nearest photosynthetic relatives of cyanobacteria. A slow-growing Escherichia coli JP5 mutant strain, containing a very low level of soluble inorganic pyrophosphatase activity, was functionally complemented up to wild-type growth rates with ppa genes from diverse photosynthetic prokaryotes expressed under their own promoters. Overall, these results suggest that the bacterial family I soluble inorganic pyrophosphatases described here have retained functional similarities despite their genealogies and their adaptations to diverse metabolic scenarios.  相似文献   

20.
Sexual reproduction in higher plants uses pollination, involving interactions between pollen and pistil. Self-incompatibility (SI) prevents self-fertilization, providing an important mechanism to promote outbreeding. SI is controlled by the S-locus; discrimination occurs between incompatible pollen, which is rejected, while compatible pollen can achieve fertilization. In Papaver rhoeas, S proteins encoded by the pistil part of the S-locus interact with incompatible pollen to effect rapid inhibition of tip growth. This self-incompatible interaction triggers a Ca(2+)-dependent signalling cascade. SI-specific events triggered in incompatible pollen include rapid depolymerization of the actin cytoskeleton; phosphorylation of soluble inorganic pyrophosphatases, and activation of a MAPK. It has recently been shown that programmed cell death (PCD) is triggered by SI. This provides a precise mechanism for the specific destruction of 'self' pollen. Recent data providing evidence for SI-induced caspase-3-like protease activity, and the involvement of actin depolymerization and MAPK activation in SI-mediated PCD will be discussed. These studies not only significantly advance our understanding of the mechanisms involved in SI, but also contribute to our understanding of functional links between signalling components and initiation of PCD in a plant cell. Recent data demonstrating SI-mediated modification of soluble inorganic pyrophosphatases are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号