首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stability of the plasmid pKK223-200 in Escherichia coli JM105 was studied for both free and immobilized cells during continuous culture. The relationship between plasmid copy number, xylanase activity, which was coded for by the plasmid, and growth rate and culture conditions involved complex interactions which determined the plasmid stability. Generally, the plasmid stability was enhanced in cultured immobilized cells compared with free-cell cultures. This stability was associated with modified plasmid copy number, depending on the media used. Hypotheses are presented concerning the different plasmid instability kinetics observed in free-cell cultures which involve the antagonistic effects of plasmid copy number and plasmid presence on the plasmid-bearing/plasmid-free cell growth rate ratio. Both diffusional limitation in carrageenan gel beads, which is described in Theoretical Analysis of Immobilized-Cell Growth, and compartmentalized growth of immobilized cells are proposed to explain plasmid stability in immobilized cells.  相似文献   

2.
Stability of the plasmid pKK223-200 in Escherichia coli JM105 was studied for both free and immobilized cells during continuous culture. The relationship between plasmid copy number, xylanase activity, which was coded for by the plasmid, and growth rate and culture conditions involved complex interactions which determined the plasmid stability. Generally, the plasmid stability was enhanced in cultured immobilized cells compared with free-cell cultures. This stability was associated with modified plasmid copy number, depending on the media used. Hypotheses are presented concerning the different plasmid instability kinetics observed in free-cell cultures which involve the antagonistic effects of plasmid copy number and plasmid presence on the plasmid-bearing/plasmid-free cell growth rate ratio. Both diffusional limitation in carrageenan gel beads, which is described in Theoretical Analysis of Immobilized-Cell Growth, and compartmentalized growth of immobilized cells are proposed to explain plasmid stability in immobilized cells.  相似文献   

3.
Escherichia coli B/pTG201 recombinant cells were immobilized by entrapment in a carrageenan gel and cultivated in nonselective media to investigate the effect of agitation rate on plasmid stability, biomass concentration, and enzyme productivity. These parameters were studied in continuous cultures for free and immobilized cells, respectively. Immobilized recombinant cells exhibit an increase in the stability of the plasmid pTG201 compared to free cells, even under conditions where the tendency of plasmid stability for free cells decreased generally more rapidly under a higher agitation rate. Intensive agitation, resulting also in a strong shear stress, greatly reduced cell concentration within gel beads throughout the course of growth. Higher enzyme expression of catechol 2–3, dioxygenase was also obtained in leaked cells due to better maintenance of plasmid stability and higher plasmid copy number with regard to free cells. Enzyme productivity of leaked and free cells in minimal medium decreased with the increase in agitation rate, due to decreased plasmid stability; however, in LB medium, it increased in the presence of higher agitation rate related to important cell concentration.  相似文献   

4.
Escherichia coli B/pTG201 recombinant cells were immobilized by entrapment in a carrageenan gel and cultivated in nonselective media to investigate the effect of agitation rate on plasmid stability, biomass concentration, and enzyme productivity. These parameters were studied in continuous cultures for free and immobilized cells, respectively. Immobilized recombinant cells exhibit an increase in the stability of the plasmid pTG201 compared to free cells, even under conditions where the tendency of plasmid stability for free cells decreased generally more rapidly under a higher agitation rate. Intensive agitation, resulting also in a strong shear stress, greatly reduced cell concentration within gel beads throughout the course of growth. Higher enzyme expression of catechol 2–3, dioxygenase was also obtained in leaked cells due to better maintenance of plasmid stability and higher plasmid copy number with regard to free cells. Enzyme productivity of leaked and free cells in minimal medium decreased with the increase in agitation rate, due to decreased plasmid stability; however, in LB medium, it increased in the presence of higher agitation rate related to important cell concentration.  相似文献   

5.
In order to better understand the high plasmid stability in immobilized recombinant E. coli cells, the effects of dilution rate on the pTG201 plasmid stability, the copy number, and the catechol 2,3-dioxygenase (encoded by XyIE gene) production were, at first, studied in free E. coli W3101 continuous cultures in minimal media. It was found that decreasing specific growth rate increased the plasmid copy number and the catechol 2,3-dioxygenase activity but the stability decreased. In continuous culture with immobilized cells, an increase was shown in plasmid copy number and catechol 2,3-dioxygenase activity probably due to the distribution of growth in the gel beads. Besides mechanical properties of gel beads which may allow limited cell divisions, the increase in plasmid copy number is involved in enhanced plasmid stability in immobilized cells. In the same way, an experiment conducted in LB medium dealing with competition between pTG201-free and pTG201-containing E. coli B cells was described. It was shown that the competition was not more pronounced in gel bead compared to a free system. The effects of nutritional limitations on pTG201 plasmid stability and catechol 2,3-dioxygenase activity during chemostat cultivations in free and immobilized E. coli B cells were also investigated. It was found that immobilization of cells increased the stability of pTG201 even under glucose, nitrogen, or phosphate limited cultures. However in the case of magnesium depleted culture, pTG201 was shown to be relatively instable and a decrease in viable cell number during the immobilized continuous culture was observed. By contrast to the free system, the catechol 2,3-dioxygenase activity increased in immobilized cells under all culture conditions used.  相似文献   

6.
A new method is presented for the treatment of gel-type supports, used for immobilizing microbial cells and enzymes, to obtain high mechanical strength. It is particularly useful for ethanol fermentation over gel beads containing immobilized viable cells, where the beads can be ruptured by gas production and the growth of cells within the gels. This method consists of treating agar or carrageenan gel with polyacrylamide to form a rigid support which retains the high catalytic activity characteristic of the untreated biocatalysts. The size and shape of the biocatalyst is unaffected by this treatment. The method involves the diffusion of acrylamide, N,N'-methylenebisacrylamide and beta-dimethylaminopropionitrile (or N,N,N',N'-tetramethyl-ethylenediamine) into the performed biocatalyst beads followed by the addition of an initiator to cause polymerization within the beads. Treated gels have been used for the continuous fermentation of glucose to ethanol in a packed column for over two months. During this operation, the gel beads maintained their rigidity, and the maximum productivity was as high as 50 g h(-1) L(-1) gel. There was no appreciable decay of cell activity.  相似文献   

7.
Escherichia coli BZ 18 harboring the plasmid pTG 201 and immobilized in carrageenan gel beads in continuous culture without selection pressure, provides a better stability of the plasmid than free cells, with an approximately equal production of biomass.  相似文献   

8.
Immobilization of whole living cells was used as an experimental approach to enhance plasmid stability in cultured recombinant micro-organisms. pTG201 plasmid which is very unstable in continuous cultures with free cells, was found to be extremely stable in continuous cultures with immobilized cells.To elucidate the mechanism by which immobilization increases the plasmid stability, we analyzed the growth of pTG201-containing E. coli W3101 cells within the gel beads. We found that in immobilized continuous culture, plasmid-free segregants were not detected even after 240 generations. This appears to be due to the mechanical properties of the gel-bead system that allow only a limited number of cell divisions (10–16) to occur in each clone of cells before the clone escapes from the gel bead. This number of generations is not sufficient for the plasmid-free cells to appear within the cavities compared to what was observed in a free-system (plasmid-free segregants were detected after a lag period of approximately 25–30 generations). Even when they appear, they cannot overcome the culture. From the data described in this paper we conclude that cells released from the gel beads at any time during continuous culture are cells which are issued from cells grown in the cavities for only 10–16 generations.  相似文献   

9.
Efficient production of thermophilic α-amylase from Bacillus stearothermophilus was investigated using recombinant Escherichia coli HB101/pH1301 immobilized with κ-carrageenan by the addition of glycine. The effects of glycine, the concentrations of κ-carrageenan and KCI on the production of the enzyme as well as the stability of plasmid pHI301 were studied. In the absence of glycine, the enzyme was localized in the periplasmic space of the recombinant E. coli cells and a small amount of the enzyme was liberated in the culture broth. Although the addition of glycine was very effective for release of α-amylase from the periplasm of E. coli entrapped in gel beads, a majority of the enzyme accumulated in the gel matrix. (In this paper, production of the enzyme from recombinant cells to an ambient is expressed by the term “release”, while diffusion-out from gel beads is referred to by the term “liberate”.) Concentrations of KCI and immobilizing support significantly affected on the liberation of α-amylase to the culture broth. Mutants which produced smaller amounts of the enzyme emerged during a successive culture of recombinant E. coli, even under selective pressure, and they predominated in the later period of the passages. The population of plasmid-lost segregants increased with cultivation time. The stability of pHI301 for the free cells was increased by the addition of 2% KCI, which is a hardening agent for carrageenan. Although the viability of cells and α-amylase activity in the beads decreased with cultivation time during the successive culture of the immobilized recombinant E. coli, the plasmid stability was increased successfully by immobilization. Efficient long-term production of α-amylase was attained by an iterative re-activation-liberation procedure using the immobilized recombinant cells. Although the viable cell number, plasmid stability and enzyme activity liberated in the glycine solution decreased at an early period in the cultivation cycles, the process attained steady state regardless of the addition of an antibiotic.  相似文献   

10.
A reliable and reproducible method for the estimation of the protein content of fungal cells immobilized in a carrageenan gel is described. The procedure depends upon the acid lability of the polysaccharide gel at 90 degrees C and on the acetone solubility of accumulated phenolics. Freeze-dried gel beads (2-3 mm) containing entrapped cells of Penicillium urticae were ground to a fine powder and samples of powder (approximately 20 mg) were sequentially extracted with hot 1 N HCl - 0.9% NaCl and acetone. The precipitated residue contained the cell protein, which was then solubilized with 1 N NaOH at 90 degrees C and quantitated by the Folin-Lowry method. Interferences from both carrageenan and phenols were thus eliminated. The presence of carrageenan (20-25 mg) did not affect the recovery of varying amounts (0-2500 micrograms) of bovine serum albumin. The recovery of radiolabeled protein from immobilized cells was parallel to that of Folin-Lowry positive material over a range of 0-60 beads (0-60 mg powder). Cycloheximide (0-100 micrograms/mL) was shown to progressively inhibit the incorporation of L-[U-14C]leucine so that the radioactivity present in the initial HCl-NaCl extract (i.e., [14C]leucine) increased as that in the final NaOH extract (i.e., 14C-labeled protein) decreased. Using this new assay for cell protein, free and immobilized cell cultures were found to exhibit virtually identical kinetics of glucose utilization, growth, and patulin production. In addition to providing a means of comparing the specific productivity of free versus immobilized cell preparations, this assay accurately measures the incorporation of [14C]leucine into cellular protein and could be used as a measure of cell viability.  相似文献   

11.
Summary Different gelling agents were used to immobilized viable cells in either alginate or -carrageenan gel beads. Based on cell leakage from the gel beads, oxygen and glucose diffusion coefficients and toxicity of the gelling agents, SrCl2 was found to be the best for immobilization of aerobic microbial cells in, not only alginate but also carrageenan gel beads.  相似文献   

12.
The maintenance of the plasmid vectors pTG201 and pTG206 (which both carry the Pseudomonas putida xylE gene) and pB lambda H3 in Escherichia coli hosts was studied in free and immobilized continuous cultures. pTG201, containing the strong lambda PR promoter, was more quickly lost than plasmid pTG206, containing the tetracycline resistance gene promoter. The instability of pTG201 seems to be related to high expression of the cloned xylE genet. Fluctuations in the proportion of pTG201-containing cells were observed in the free system, suggesting the appearance of adaptive descendants (with and without plasmid) from the initial strains. The loss of plasmid vectors from E. coli cells and the fluctuations in the proportion of plasmid-containing cells could be prevented by immobilizing plasmid-containing bacteria in carrageenan gel beads.  相似文献   

13.
Abstract: The immobilization of recombinant Bacillus subtilis in K-carrageenan gel beads has been performed in order to study the growth conditions inside the gel beads and to improve plasmid stability. Bacterial colonies showing high cell density were studied using scanning electron microscopy. A series of continuous cultures of free and immobilized B. subtilis MT119 (pHV1431, pIL252 and pIL252 Kpn) have been developed without selection pressure. In the free-cell systems, it was found that a loss of plasmid vectors occurred after a short period. In contrast, in the immobilized cell systems, plasmid-free segregants were not detected in any of the cases during the first 80 h of the culture.  相似文献   

14.
Summary Cells of Escherichia coli K12, carrying the recombinant plasmid pTG201, were immobilized in -carrageenan gel in order to improve the following plasmid parameters: (i) maintenance of a high level of plasmid copy number, (ii) good plasmid stability and (iii) good expression of plasmid encoded gene. The experiments were carried out on LB medium without antibiotic selection in continuous and batch cultures supplied with air or pure oxygen. Parallel experiments with free cells were also performed. In all the cases immobilized cells presented better plasmid stability parameters than free cells. Best results were obtained with immobilized cells supplied with pure oxygen. In this case, an average plasmid copy number of 60 and a value of plasmid-carrying cells close to 100% were maintained with little change during more than 200 generations. In addition, an optical microscopy analysis is proposed to allow the quantitation of cell growth in gel beads.  相似文献   

15.
The effects of encapsulation on the production of recombinant human proteins by Nicotiana tabacum cells were investigated using alginate, carrageenan, and agar as immobilization matrices. Experiments showed that cell encapsulation in alginate increased the production of human granulocyte-macrophage colony-stimulating factor (GM-CSF) in tobacco cells by approximately 50%. Alginate also yielded the highest quality beads and the most reproducible growth results. The most likely cause for this increased protein production is the altered growth conditions within the alginate beads resulting in a prolonged exponential growth phase. To characterize these effects, we compared growth performance and protein production for various gel geometries, bead sizes, and volume fractions of beads.  相似文献   

16.
Escherichia intermedia cells were immobilized by entrapment in a carrageenan gel and used for -DOPA synthesis from catechol, pyruvate, and ammonia. A preparation containing 75 mg of cell per gram of gel retained 60–65% of its original activity. The effect of substrate concentrations on the initial rate of -DOPA synthesis was very similar for free and immobilized cells, and substrate inhibition was observed for the three substrates. In batch reactors, up to 7.8 g l−1 of -DOPA was obtained in 20 h (productivity 0.39 g l−1 h−1). Cells immobilized in a carrageenan gel showed higher -DOPA synthesis, in both initial rates conditions and batch reactors, than cells immobilized in a polyacrylamide gel.  相似文献   

17.
Summary Conidia of Aspergillus oryzae were immobilized in Ca-alginate beads and then incubated in a nutrient medium to yield an immobilized biocatalyst producing kojic acid. The immobilized cell cultures produced kojic acid linearly during cultivation. Regardless of the size of the immobilized particles, there existed an optimal nitrogen concentration for the maximum production rate of kojic acid, at which smaller bead sizes resulted in a higher production rate. When the growth of mycelia were confined within the bead surface and segregated from each other by gel material, they produced kojic acid with maximal catalytic activity and exhibited the highest conversion yield of glucose. The extent of mycelial segregation was especially higher in cultures of smaller bead particles, and the depth of mycelial growth was 150 to 250 m from the gel bead surface in all cultures of different nitrogen concentrations and bead sizes. Therefore, for the maximum expression of catalytic activities of immobilized mycelial cultures, it was found very critical to optimally control the mycelial distribution in gel beads by the culture conditions affecting mycelial growth.  相似文献   

18.
Immobilization of Escherichia coli JM103[pUC8] was carried out with kappa-carrageenan as the support matrix. Substantial natural excretion of beta-lactamase, attributable to the less intact membrane of plasmid-harboring cells, was observed in immobilized cell cultures. Nevertheless, a significant portion of the beta-lactamase produced was retained in the cells. As compared to suspension cultures, much higher beta-lactamase activities, especially in the extracellular liquid, and much longer retention of plasmid-bearing cells (improved plasmid stability) were observed in immobilized cell cultures. Further enhancement in excretion of the recombinant protein (beta-lactamase) was achieved by permeabilization of cell membrane by periodic exposure of the immobilized cell cultures to ethylenediaminetetraacetic acid (EDTA). While the presence of EDTA led to some suppression of cell growth in suspension cultures, cell growth in gel beads was not affected by EDTA to the same extent, possibly due to lesser exposure of immobilized cells to EDTA. Exposure of immobilized cell cultures to EDTA presumably inhibited plasmid replication and led in turn to diversion of cellular resources for the support of expression of plasmid genes. Indeed, treatment of the immobilized cell cultures with EDTA resulted in increased production of beta-lactamase when compared to the enzyme production in EDTA-free cultures. More frequent addition of EDTA increased the period of retention of plasmid-bearing cells in these cultures but did not have any noticeable adverse effect on synthesis of beta-lactamase. Improvement in plasmid stability in EDTA-treated immobilized cell cultures was ascribed to the reduction in the growth rate differential between plasmid-free and plasmid-bearing cells, since plasmid-free cells were subject to more reduction in specific growth rate than were plasmid-bearing cells.  相似文献   

19.
Summary Growing Escherichia coli BZ18/pTG 201 cells were immobilized in Kappa-carrageenan gel beads. The bacterial growth after immobilization was studied by cellular counting and by morphological observations with electron microscopy. Kinetic studies of the Catechol 2–3 dioxygenase carried by the plasmid pTG 201 were performed with a packed-bed reactor to show the potential of such a system. High cell densities 1.7×1011 cells/ml) were observed in the cavities of the gel. Due to the difference between the cell density in suspension (8x108 cells/ml) and that within the gel cavities, a reduction of the reactor size and investment cost for processes can be predicted.  相似文献   

20.
A mathematical model has been developed for the unsteady-state operation of an immobilized cell reactor. The substrate solution flows through a mixed-flow reactor in which cells immobilized in gel beads are retained. The substrate diffuses from the external surface of the gel beads to some internal location where reaction occurs. The product diffuses from the gel beads into liquid medium which flows out of the reactor. The model combines simultaneous diffusion and reaction, as well as cell growth, and it can predict how the rates of substrate consumption, product formation, and cell growth vary with time and with initial conditions. Ethanol fermentation was chosen as a representative reaction in the immobilized cell reactor, and numerical calculations were carried out. Excellent agreement was observed between model predictions and experimental data available in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号