首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone ingrowth into a porous surface is one of the primary methods for fixation of orthopaedic implants. Improved understanding of bone formation and fixation of these devices should improve their performance and longevity. In this study predictions of bone ingrowth into an implant porous coating were investigated using mechano-reculatory models. The mechano-regulatory tissue differentiation algorithm proposed by Lacroix et al., and a modified version that enforces a tissue differentiation pathway by transitioning from differentiation to bone adaptation were investigated. The modified algorithm resulted in nearly the same behavior as the original algorithm when applied to a fracture-healing model. The algorithms were further compared using micromechanical finite element model of a beaded porous scaffold. Predictions of bone and fibrous tissue formation were compared between the two algorithms and to clinically observed phenomena. Under loading conditions corresponding to a press-fit hip stem, the modified algorithm predicted bone ingrowth into approximately 25% of the pore space, which is similar to that reported in experimental studies, while the original algorithm was unstable. When micromotion at the bone-implant interface was simulated, 20 mum of transverse displacement resulted in soft tissue formation at the bone-implant interface and minimal bone ingrowth. In contrast, 10 and 5 mum of micromotion resulted in bone filling 40% of the pore space and a stable interface, again consistent with clinical and experimental observations.  相似文献   

2.
Nowadays, there is a growing consensus on the impact of mechanical loading on bone biology. A bone chamber provides a mechanically isolated in vivo environment in which the influence of different parameters on the tissue response around loaded implants can be investigated. This also provides data to assess the feasibility of different mechanobiological models that mathematically describe the mechanoregulation of tissue differentiation. Before comparing numerical results to animal experimental results, it is necessary to investigate the influence of the different model parameters on the outcome of the simulations. A 2D finite element model of the tissue inside the bone chamber was created. The differentiation models developed by Prendergast, et al. [“Biophysical stimuli on cells during tissue differentiation at implant interfaces”, Journal of Biomechanics, 30(6), (1997), 539–548], Huiskes et al. [“A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation”, Journal of Material Science: Materials in Medicine, 8 (1997) 785–788] and by Claes and Heigele [“Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing”, Journal of Biomechanics, 32(3), (1999) 255–266] were implemented and integrated in the finite element code. The fluid component in the first model has an important effect on the predicted differentiation patterns. It has a direct effect on the predicted degree of maturation of bone and a substantial indirect effect on the simulated deformations and hence the predicted phenotypes of the tissue in the chamber. Finally, the presence of fluid also causes time-dependent behavior.

Both models lead to qualitative and quantitative differences in predicted differentiation patterns. Because of the different nature of the tissue phenotypes used to describe the differentiation processes, it is however hard to compare both models in terms of their validity.  相似文献   

3.
Trabecular bone fractures heal through intramembraneous ossification. This process differs from diaphyseal fracture healing in that the trabecular marrow provides a rich vascular supply to the healing bone, there is very little callus formation, woven bone forms directly without a cartilage intermediary, and the woven bone is remodelled to form trabecular bone. Previous studies have used numerical methods to simulate diaphyseal fracture healing or bone remodelling, however not trabecular fracture healing, which involves both tissue differentiation and trabecular formation. The objective of this study was to determine if intramembraneous bone formation and remodelling during trabecular bone fracture healing could be simulated using the same mechanobiological principles as those proposed for diaphyseal fracture healing. Using finite element analysis and the fuzzy logic for diaphyseal healing, the model simulated formation of woven bone in the fracture gap and subsequent remodelling of the bone to form trabecular bone. We also demonstrated that the trabecular structure is dependent on the applied loading conditions. A single model that can simulate bone healing and remodelling may prove to be a useful tool in predicting musculoskeletal tissue differentiation in different vascular and mechanical environments.  相似文献   

4.
Computational models are employed as tools to investigate possible mechanoregulation pathways for tissue differentiation and bone healing. However, current models do not account for the uncertainty in input parameters, and often include assumptions about parameter values that are not yet established. The objective of this study was to determine the most important cellular characteristics of a mechanoregulatory model describing both cell phenotype-specific and mechanobiological processes that are active during bone healing using a statistical approach. The computational model included an adaptive two-dimensional finite element model of a fractured long bone. Three different outcome criteria were quantified: (1) ability to predict sequential healing events, (2) amount of bone formation at early, mid and late stages of healing and (3) the total time until complete healing. For the statistical analysis, first a resolution IV fractional factorial design (L64) was used to identify the most significant factors. Thereafter, a three-level Taguchi orthogonal array (L27) was employed to study the curvature (non-linearity) of the 10 identified most important parameters. The results show that the ability of the model to predict the sequences of normal fracture healing was predominantly influenced by the rate of matrix production of bone, followed by cartilage degradation (replacement). The amount of bone formation at early stages was solely dependent on matrix production of bone and the proliferation rate of osteoblasts. However, the amount of bone formation at mid and late phases had the rate of matrix production of cartilage as the most influential parameter. The time to complete healing was primarily dependent on the rate of cartilage degradation during endochondral ossification, followed by the rate of cartilage formation. The analyses of the curvature revealed a linear response for parameters related to bone, where higher rates of formation were more beneficial to healing. In contrast, parameters related to fibrous tissue and cartilage showed optimum levels. Some fibrous connective tissue- and cartilage formation was beneficial to bone healing, but too much of either tissue delayed bone formation. The identified significant parameters and processes are further confirmed by in vivo animal experiments in the literature. This study illustrates the potential of design of experiments methods for evaluating computational mechanobiological model parameters and suggests that further experiments should preferably focus at establishing values of parameters related to cartilage formation and degradation.  相似文献   

5.
As a basis for model-based analysis of the processes in secondary fracture healing, a dynamical model is presented that characterises the physiological status in the fracture area by the location-dependent composition of tissues. Five types of tissue are distinguished: connective tissue, cartilage, bone, haematoma and avascular bone. A rule base is given that describes dynamical tissue differentiation processes. The rules consider not only a mechanical stimulus but also osteogenic and a vasculative factors as biological stimuli. Within this model structure, it is possible, e.g., to distinguish intramembranous from endochondral ossification processes. An objective function is introduced to assess accordance between the model-based simulation results and reference healing stages. By minimising this objective function, relevant tissue differentiation rates can be determined. For a reference process of secondary fracture healing it could be shown that the intramembranous ossification rate of 0.313%/day (from connective tissue to bone) is much smaller than the endochondral ossification rate of 1.136%/day (from cartilage to bone). In order to verify the model approach, it is transferred to simulate long bone distraction. Results show that healing patterns of bone distraction can be predicted. Using this method, it is possible to identify model parameters for individual subjects. This will allow a patient-specific analysis of tissue healing processes in future.  相似文献   

6.
A dynamic model was developed to simulate complex interactions of mechanical stability, revascularisation and tissue differentiation in secondary fracture healing. Unlike previous models, blood perfusion was included as a spatio-temporal state variable to simulate the revascularisation process. A 2D, axisymmetrical finite element model described fracture callus mechanics. Fuzzy logic rules described the following biological processes: angiogenesis, intramembranous ossification, chondrogenesis, cartilage calcification and endochondral ossification, all of which depended on local strain state and local blood perfusion. In order to evaluate how the predicted revascularisation depended on the mechanical environment, we simulated two different healing cases according to two groups of transverse metatarsal osteotomies in sheep with different axial stability. The model predicted slower revascularisation and delayed bony bridging for the less stable case, which corresponded well to the experimental observations. A revascularisation sensitivity analysis demonstrated the potential of the model to account for different conditions regarding the blood supply.  相似文献   

7.
In this study, we are successfully fabricated on a hydrogel consisting of TiO2 nanoparticles loaded onto a gelatin/chitosan matrix to control the acceleration of bone fracture healing and improved the nursing care applications. Each specimen (chitosan, gelatin and titanium dioxide) were characterized and confirmed by using different techniques, Fourier transforms infrared spectroscopy, X-ray diffraction analysis, Scanning Electron Microscopy with Elemental dispersive X-ray analysis, Thermo-gravimetric and Differential thermal analysis. In addition, the cell cytotoxicity results verified that the TiO2/gelatin-chitosan hydrogel are nontoxic to osteoblasts. And cell fixation outcome after 5 days of incubation condition revels that the enhanced in vitro cell survival and cell spreading on the prepared TiO2 incorporated hydrogel with respect to gelatin/chitosan hydrogel. Furthermore, TiO2/gelatin-chitosan hydrogel nanostructures can modulate the bone fracture healing, indicating a potential application on nursing care.  相似文献   

8.
Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014.Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance.In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated.  相似文献   

9.
Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants.  相似文献   

10.
目的 观察四君子汤对骨损伤后小鼠免疫功能和细菌易位的影响,探讨中药在提高免疫力及预防感染方面的作用.方法 通过制备小鼠股骨骨损伤模型,骨损伤后在腹腔注射抗生素的同时辅以四君子汤,观察四君子汤对小鼠吞噬细胞功能的影响和细菌易位的控制.结果 骨损伤经四君子汤治疗后肝脏细菌易位明显减少(P<0.01);吞噬细胞功能显著增强(P<0.01);因有效控制了感染使骨修复过程加速.结论 四君子汤能够保护骨损伤后小鼠肠道细菌易位和促进骨修复.  相似文献   

11.
Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells(MSCs) are directed to replace the bone tissue, while endothelial progenitor cells(EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species,and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics.Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.  相似文献   

12.
This study explored the therapeutic effect of bone marrow mesenchymal stem cell-derived exosomes on the treatment of obesity-induced fracture healing. Quantitative real-time PCR was used to detect the expression of lncRNA H19, miR-467 and Hoxa10 and combined with WB detection to detect osteogenic markers (RUNX2, OPN, OCN). Determine whether exosomes have entered BMSCs by immunofluorescence staining. Alkaline phosphatase (ALP) and alizarin red staining (ARS) staining were used to detect ALP activity and calcium deposition. We found that high-fat treatment can inhibit the secretion of BMSCs-derived exosomes and affect the expression of H19 carried by them. In vivo and in vitro experiments show that high-fat or obesity factors can inhibit the expression of osteogenic markers and reduce the staining activity of ALP and ARS. The treatment of exosomes from normal sources can reverse the phenomenon of osteogenic differentiation and abnormal fracture healing. Further bioinformatics analysis found that miR-467 as a regulatory molecule of lncRNA H19 and Hoxa10, and we verified the targeting relationship of the three through dual luciferase report experiments. Further, we found similar phenomena in ALP and ARS staining. Bone marrow mesenchymal stem cell-derived exosomes improve fracture healing caused by obesity.  相似文献   

13.
14.
Tendinopathy is a common musculoskeletal system disorder in sports medicine, but regeneration ability of injury tendon is limited. Tendon stem cells (TSCs) have shown the definitive treatment evidence for tendinopathy and tendon injuries due to their tenogenesis capacity. Aspirin, as the representative of nonsteroidal anti-inflammatory drugs for its anti-inflammatory and analgestic actions, has been commonly used in treating tendinopathy in clinical, but the effect of aspirin on tenogenesis of TSCs is unclear. We hypothesized that aspirin could promote injury tendon healing through inducing TSCs tenogenesis. The aim of the present study is to make clear the effect of aspirin on TSC tenogenesis and tendon healing in tendinopathy, and thus provide new treatment evidence and strategy of aspirin for clinical practice. First, TSCs were treated with aspirin under tenogenic medium for 3, 7, and 14 days. Sirius Red staining was performed to observe the TSC differentiation. Furthermore, RNA sequencing was utilized to screen out different genes between the induction group and aspirin treatment group. Then, we identified the filtrated molecules and compared their effect on tenogenesis and related signaling pathway. At last, we constructed the tendinopathy model and compared biomechanical changes after aspirin intake. From the results, we found that aspirin promoted tenogenesis of TSCs. RNA sequencing showed that growth differentiation factor 6 (GDF6), GDF7, and GDF11 were upregulated in induction medium with the aspirin group compared with the induction medium group. GDF7 increased tenogenesis and activated Smad1/5 signaling. In addition, aspirin increased the expression of TNC, TNMD, and Scx and biomechanical properties of the injured tendon. In conclusion, aspirin promoted TSC tenogenesis and tendinopathy healing through GDF7/Smad1/5 signaling, and this provided new treatment evidence of aspirin for tendinopathy and tendon injuries.  相似文献   

15.
The field of epidermal stem cells has dramatically advanced in the last decade, leading to a better understanding of the molecular factors, signalling pathways and cellular events that identify and characterize stem cells, thus revealing their immense potential for therapeutic use. Furthermore, multipotent epidermal stem cells present the major advantage of easy accessibility with the discovery of their specific location within the bulge of the hair follicle. This review focuses on the most recent findings on epidermal stem cells, and their potential role in initial epidermal commitment, differentiation and wound healing processes in the skin.  相似文献   

16.
目的探究间歇式轴向压应力对组织工程骨种子细胞黏附、增殖与成骨分化能力的影响。 方法构建表达绿色荧光蛋白的兔骨髓间充质干细胞(rBMSCs)作为示踪种子细胞,运用旋转细胞培养仪将松质骨支架和种子细胞共培养7 d获得组织工程骨(TEB),实验组在第7 ~ 14天施加大小10 N、频率1 Hz、4 h/d的间歇式轴向压应力刺激,对照组常规培养,14 d后胰酶消化法获取两组种子细胞并比较其黏附、增殖和成骨分化能力。采用两组独立样本t检验进行统计学分析。 结果(1)流式细胞术显示rBMSCs被成功提取分离。(2)倒置荧光显微镜及扫描电镜显示TEB中种子细胞与支架相容性良好。(3)活体荧光成像系统及扫描电镜显示应力刺激组种子细胞的生长状况要优于非应力刺激组,前者平均荧光密度及细胞数/500倍视野均大于后者,差异均具有统计学意义(平均荧光密度:(3.75±0.34)×108 vs (2.91±0.22)×108,t = 2.90,P = 0.04;细胞数/500倍视野:30.50±4.43 vs 21.00±5.13,t = 3.14,P = 0.01)。(4)细胞黏附实验显示,应力刺激组种子细胞的75%细胞贴壁时间短于非应力刺激组,两组时间分别为(3.00±0.41)h、(13.33±1.70)h,差异具有统计学意义(t = 8.20,P < 0.01),前者的最终细胞贴壁率高于后者(99.97%±0.34% vs 85.83%±1.18%),差异具有统计学意义(t = 11.31,P < 0.01)。(5)CCK-8检测显示,在培养第48 ~ 96 h,应力刺激组种子细胞的增殖能力优于非应力刺激组,将两者的450 nm吸光度值在第48小时(0.49±0.02、0.40±0.02)、72 h(0.76±0.07、0.64±0.04)和96 h(1.58±0.07、1.34±0.13)分别进行比较,差异均具有统计学意义(t = 5.15、2.57、2.86,P均< 0.01)。(6)在成骨诱导14 d后,应力刺激组种子细胞的ALP和Ca结节染色阳性率要强于非应力刺激组:两组ALP染色阳性率分别为26.73%±4.56%、16.68% ± 3.89%,差异具有统计学意义(t =3.33,P = 0.03);两组Ca结节染色阳性率分别为41.81%±3.56%、27.40% ± 2.35%,差异具有统计学意义(t = 3.68,P = 0.02)。 结论间歇性轴向压应力可促进组织工程骨种子细胞的黏附、增殖与成骨分化。  相似文献   

17.
Fracture repair is a complex process involving timed cellular recruitment, gene expression, and synthesis of compounds that regenerate native tissue to restore the mechanical integrity, and thus function of injured bone. While the majority of fractures heal without complication, this takes time and a subset of patients (~10%) experience healing delays, extending their morbidity and treatment costs. Consequently, there is a need for efficacious therapeutics for the intervention of fracture healing. Recent studies into the molecular control of fracture repair and advances in the understanding of the skeleton as a whole have resulted in the identification of numerous novel targets and compounds for such intervention. These include traditional agents such bone morphogenetic proteins and other growth factors, but also relatively newer compounds such as parathyroid hormone and modulators of the Wnt signaling pathway. These agents, along with others, are discussed in the current article in terms of their investigative status and potential for clinical implementation. Hopefully, these agents, as well as others yet to be discovered, will demonstrate sufficient clinical utility for successful intervention of fracture healing. This may have significant implications for the duration of morbidity and costs associated with traumatic bone fractures. J. Cell. Biochem. 109: 302–311, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
We describe a medicinal chemistry approach to the discovery of a novel EP1 antagonist exhibiting high potency and good pharmacokinetics. Our starting point is 1, an EP1 receptor antagonist that exhibits pharmacological efficacy in cystometry models following intravenous administration. Despite its good potency in vitro, the high lipophilicity of 1 is a concern in long-term in vivo studies. Further medicinal chemistry efforts identified 4 as an improved lead compound with good in vitro ADME profile applicable to long term in vivo studies. A rat fracture study was conducted with 4 for 4?weeks to validate its utility in bone fracture healing. The results suggest that this EP1 receptor antagonist stimulates callus formation and thus 4 has potential for enhancing fracture healing.  相似文献   

19.
20.
Tissue engineering is a clinically driven field and has emerged as a potential alternative to organ transplantation. The cornerstone of successful tissue engineering rests upon two essential elements: cells and scaffolds. Recently, it was found that stem cells have unique capabilities of self-renewal and multilineage differentiation to serve as a versatile cell source, while nanomaterials have lately emerged as promising candidates in producing scaffolds able to better mimic the nanostructure in natural extracellular matrix and to efficiently replace defective tissues. This article, therefore, reviews the key developments in tissue engineering, where the combination of stem cells and nanomaterial scaffolds has been utilized over the past several years. We consider the high potential, as well as the main issues related to the application of stem cells and nanomaterial scaffolds for a range of tissues including bone, cartilage, nerve, liver, eye etc. Promising in vitro results such as efficient attachment, proliferation and differentiation of stem cells have been compiled in a series of examples involving different nanomaterials. Furthermore, the merits of the marriage of stem cells and nanomaterial scaffolds are also demonstrated in vivo, providing early successes to support subsequent clinical investigations. This progress simultaneously drives mechanistic research into the mechanotransduction process responsible for the observations in order to optimize the process further. Current understanding is chiefly reported to involve the interaction of stem cells and the anchoring nanomaterial scaffolds by activating various signaling pathways. Substrate surface characteristics and scaffold bulk properties are also reported to influence not only short term stem cell adhesion, spreading and proliferation, but also longer term lineage differentiation, functionalization and viability. It is expected that the combination of stem cells and nanomaterials will develop into an important tool in tissue engineering for the innovative treatment of many diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号