首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epizoochorous dispersal of plant seeds is an important long-distance dispersal mechanism. Yet little is known about retention times of seeds in animal furs and hence about potential dispersal distances of the seeds. Here, we used marked seeds of 12 plant species to determine seed depletion curves on Galloway cattle and Haflinger horse in three vegetation types (forest, tall herbage vegetation and meadow), in both dry and rainy weather conditions. In the long fur of Galloway cattle, seeds were retained significantly longer than in the short fur of Haflinger horse. In general, seed retention times were not considerably affected by the structure of the surrounding vegetation. The impact of the weather was negligible, only affecting the retention of some plant species. Negative exponential functions were fitted to the seed depletion curves. Using the parameters of curve estimations in the different conditions of animal species and vegetation structure, half-life seed retention times of up to 13 h for Galloway cattle and up to more than 4 h for Haflinger horse could be calculated, with corresponding potential half-life dispersal distances in the order of magnitude of tens of metres to a few kilometres. Different seed traits correlated with seed retention times in the long cattle fur and in the short horse fur, respectively.  相似文献   

2.
This paper addresses the hypothesis that the spray application system used will affect the retention of spray deposits of microbial herbicides on different plant structures. There was greater spray retention on the hypocotyl of 4 to 6-true leaf Amaranthus retroflexus plants (20-31%) sprayed with an aerosol-producing laboratory sprayer than with a hydraulic nozzle (3-5%). Spray deposition and retention from the hydraulic nozzle was increased by 28-42% when the nozzle was used horizontally. Spray droplets generally contained the expected conidial number for the conidial concentration but this was affected by increased inoculum density (size, concentration and mycelial contamination), causing a reduction in the actual number of conidia present, compared to the expected. Up to 40-50% of the conidia in the sprayed suspension could not be accounted for when conidium deposition was on a target. This loss could increase to 90-92% when the weed was sprayed under a crop canopy.  相似文献   

3.

Aims

Sediment retention by plant barriers initiates common strategies to conserve soil fertility or restore degraded terrains, including gullied ones. Differences in species performance for sediment retention have been studied but little is known about plant performance in retention when upscaling to plurispecific barriers. We investigated the role of morphological diversity of plant barriers in sediment retention in the context of eroded marly gullies.

Methods

Fifteen plant barriers, composed of combinations of four morphologically contrasting species (grass, shrub, dwarf-shrub and juvenile tree) were tested for their sediment retention potential in an innovative life-size artificial concentrated runoff experiment. We studied the net effect of biodiversity and the role of morphological traits on sediment retention.

Results

We found that grass barriers performed best to retain sediment and morphological diversity significantly impaired sediment retention. This negative effect may be due to runoff concentrating in the least flow-resistant areas (shrubs or trees), resulting in a localized increase in flow velocity and thus an overall decrease in sediment deposition.

Conclusion

To initiate gully restoration by increasing sediment retention in their bed, morphologically homogeneous plant barriers should be favored. Plant diversity, useful for mid- and long-term restoration goals, should be considered later in the process.  相似文献   

4.
Will H  Maussner S  Tackenberg O 《Oecologia》2007,153(2):331-339
The transport of diaspores on animal hairs depends on the ability of a diaspore to attach to the hair and to be retained in it over longer periods of time. Whereas several studies of diaspore retention on animal hairs have been conducted recently, the process of diaspore attachment to the hair has not yet been studied systematically. We describe a new method to quantify the attachment potential (AtP) of plant diaspores. Attachment potential was measured as the proportion of diaspores of a given species that attached to pieces of an animal coat in a standardised experiment. The experiment was conducted for 58 plant species (herbs and grasses) and three different coat types: sheep wool, cattle and roe deer hair. Attachment potentials differed widely between the three coat types, but also between plant species. We found diaspore surface structure (a quantitative measure of diaspore morphology) and diaspore exposition (describing the morphology of the infructescence) to be the most important plant traits regulating AtP. An influence of seed mass on attachment potential could not be detected. For sheep wool, a general linear model (with diaspore exposure as a factor and diaspore surface structure as covariate) explained 77% of the variation in AtPs. To validate this model, we predicted AtPs for 27 additional species and compared these to the measured Atps; the predicted and measured AtPscorrelated significantly with r s = 0.68. A comparison of attachment and retention potentials to sheep wool for 127 randomly selected plant species showed that attachment and retention are only very weakly correlated, indicating that both processes act rather independently of each other. Since many diaspores seem to perform well in only one of these processes, attachment can be considered to be as equally as decisive as retention in terms of epizoochorous dispersal. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Long-distance dispersal is a crucial factor in the life-cycle of plants, especially in our modern, highly fragmented landscapes. Because natural herds of large animals have disappeared and grazing practices have been abandoned, important potential vectors for seed dispersal over large distances may have been lost. In the context of the re-establishment of grazing management for nature conservation purposes, it is therefore important to gain insight in the ability of grazing animals to act as seed dispersal vectors. Whereas local dispersal mainly occurs through standard vectors typically described based on morphological adaptations of the diaspore, large herbivores act as non-standard seed dispersers. Therefore, traditional dispersal classes are loosing scientific relevance and continuous predictors of dispersal potential have been proposed. Here, we explored whether dispersal related plant traits, including the "seed retention potential", could explain the distribution patterns of 180 plant species over 64 fragmented semi-natural calcareous grasslands in Belgium. The distribution of habitat specialist plant species was strongly determined by the degree of isolation of the grasslands. Interestingly, species distribution patterns were clearly linked with a species' potential to migrate through large grazers, as quantified by its retention potential: species producing seeds with high retention capacity were less affected by habitat isolation. Categorical dispersal classes based on seed morphology did not explain a species' response to fragment isolation. Although seed retention potential outperformed simple seed dimensional traits, plant height, which is an indicator of epizoochorous attachment potential, was even more important. Therefore we suggest further extension of the epizoochorous retention potential model by incorporating basic ecological mechanisms that effectively contribute to successful dispersal events.  相似文献   

6.
Serotiny—the retention of seeds in the mother plant for over a year—in unpredictable environments may increase the probability that at least some seeds are dispersed during favorable periods. Propagules may be expelled when environmental cues announcing favorable conditions occur, or be gradually released into the environment. This could be a bet-hedging strategy increasing the long-term fitness by reducing interannual variability in reproduction. However, the impact of seed retention on the population dynamics of serotinous species and its contribution to fitness has been barely explored under field conditions. We assessed these issues in the threatened Mammillaria pectinifera, a small globose cactus that gets established only in exceptionally rainy years. This species expels some seeds actively during unusually rainy periods, while dispersing others passively over several years. Dynamics of the seeds in the mother plant over two very contrasting years in terms of precipitation was incorporated into a stochastic matrix model. Seed retention was found to increase significantly the probability that some of the seeds retained in any given year are dispersed within a subsequent rainy period. Active seed-expulsion raises this probability even further. As expected in bet hedgers, seed retention increased fitness in the presence of temporal variability. Active fruit expulsion did not affect fitness, but reduced demographic stochasticity. The incomplete serotiny and fruit expulsion observed is the evolutionary outcome expected for the environment and life-history attributes of the species.  相似文献   

7.
碎石覆盖对河流硬质护坡土壤抗侵蚀性及植物生长的影响   总被引:1,自引:0,他引:1  
针对河流硬质护坡生态修复中的稳定性和水分平衡等技术难点,提出了一种碎石覆盖技术,并通过抗冲刷实验和盆栽实验分析了不同碎石覆盖对土壤抗冲刷能力、保水性能及植物生长的影响.结果表明:粒径为1.5~2 cm的碎石覆盖处理在增强土壤抗冲刷能力、提高土壤保水性能和植物生物量方面效果明显,但覆盖厚度为5 cm和8 cm的碎石覆盖处理在抗冲刷、保水和促进植物生长方面的作用均无明显差异.厚5 cm、粒径为1.5~2 cm的碎石覆盖技术是硬质护坡生态修复中一种经济有效的技术方法.  相似文献   

8.
J Denecke  R De Rycke    J Botterman 《The EMBO journal》1992,11(6):2345-2355
We studied protein sorting signals which are responsible for the retention of reticuloplasmins in the lumen of the plant endoplasmic reticulum (ER). A non-specific passenger protein, previously shown to be secreted by default, was used as a carrier for such signals. Tagging with C-terminal tetrapeptide sequences of mammalian (KDEL) and yeast (HDEL) reticuloplasmins led to effective accumulation of the protein chimeras in the lumen of the plant ER. Some single amino acid substitutions within the tetrapeptide tag (-SDEL, -KDDL, -KDEI and -KDEV) can cause a complete loss of its function as a retention signal, demonstrating the high specificity of the retention machinery. However, other modifications confer efficient (-RDEL) or partial (-KEEL) retention. It is also shown that the efficiency of protein retention is not significantly impaired by an increased ligand concentration in plants. The efficiently retained chimeras (-KDEL, -HDEL and -RDEL) were shown to be recognized by a monoclonal antibody directed against the C-terminus of the mammalian reticuloplasmin protein disulfide isomerase (PDI). The recognized epitope is also present in several putative reticuloplasmins in microsomal fractions of plant and mammalian cells, suggesting that the antibodies recognize an important structural determinant of the retention signal. In addition, data are discussed which support the view that upstream sequences beyond the C-terminal tetrapeptide can influence or may be part of the structure of reticuloplasmin retention signals.  相似文献   

9.
Questions: Is the red fox a potential vector for epizoochorous seed dispersal? Can seed attachment and retention be predicted from plant and seed traits? Location: Grasslands in southern Norway. Methods: Epizoochorous seed attachment on the red fox was studied by walking a dummy fox through the vegetation and comparing seeds found on the dummy with the estimated seed availability in the vegetation. Seed retention, i.e. the ability of different seeds to stay on the fox, was estimated in a separate experiment. Seed attachment and retention were related to plant and seed traits using statistical models that account for heteroscedasticity and zero‐inflated data. Results: The majority of seeds attached to the fox originated from a few species, but also species without specific seed traits that are supposed to enhance epizoochory attached at least some seeds to the fox. The probability of seed attachment was positively related to plant height, bristle and hooked seed appendages, and negatively related to winged appendages, seed mass, and seed sphericity. Seed retention was positively related to the seed traits bristles, hooks and pappus. For several species, the results indicate a high potential for dispersal over long distances. Conclusions: In modern agricultural landscapes, large herbivores are often restricted in their mobility or are found at low densities, and other animal vectors may therefore be important for seed dispersal. In our study, a range of plant species were able to disperse by attaching seeds to, and having their seeds retained in, the fox fur some distance. We suggest that the red fox may be an important vector for epizoochorous seed dispersal in the agricultural landscape.  相似文献   

10.
The cDNA encoding N-terminal three immunoglobin-like domains of human M-CSFR was linked to His-tag and endoplasmic reticulum retention sequence (KDEL) before being inserted into the genome of tobacco plant, Nicotiana tabacum cv. NC-89, by Agrobacterium tumefaciens-mediated transformation. The insertion and expression of target gene were confirmed by PCR, ELISA, and Western blot. The recombinant M-CSFsR reached a maximum expression level of 1.92% of total soluble protein in transgenic tobacco plant leaf tissues. The recombinant M-CSFsR could be purified through a one-step IMAC process and its bioactivity was confirmed by the inhibition of colony formation of J6-1 cells. The results suggested that we successfully expressed a high level of bioactive human M-CSFsR in tobacco plants.  相似文献   

11.
小麦化感作用研究进展   总被引:29,自引:2,他引:29  
小麦是世界第一大粮食作物,在农业生产中占有重要地位.然而,由于人们为保证小麦产量往往施用大量的除草剂和杀菌剂,对环境造成了极大的危害.小麦化感作用是利用小麦活体或残体向环境中释放次生代谢物质对自身或其他生物产生作用,它克服了除草剂和杀菌剂等引起的环境污染问题,具有抑制杂草控制病害的潜力.本文对已有的小麦化感作用的研究进展情况进行了综合评述.其中小麦对杂草、虫害及病害产生防御功能的主要化感物质为异羟肟酸和酚酸类物质.小麦化感物质活性的发挥除了取决于化感物质的种类外,还由小麦自身的遗传因素、环境因素和生物因素的共同作用所决定.小麦化感物质在根际土壤中的滞留、迁移和转化过程、小麦化感作用与土壤生物的关系以及相关的作用机理是小麦化感作用研究的薄弱环节。其研究方法还需进一步探索改进.小麦化感作用在植物保护、环境保护以及作物育种等方面具有广泛的应用前景,促进了小麦抗逆性的增强以及产量和品质的提高.  相似文献   

12.
Kell DB 《Annals of botany》2011,108(3):407-418
BACKGROUND: The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from 'root crops') mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. SCOPE: Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO(2). This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing.  相似文献   

13.
Proteins are co-translationally transferred into the endo-plasmic reticulum (ER) and then either retained or transported to different intracellular compartments or to the extracellular space. Various molecular signals necessary for retention in the ER or targeting to different compartments have been identified. In particular, the HDEL and KDEL signals used for retention of proteins in yeast and animal ER have also been described at the C-terminal end of soluble ER processing enzymes in plants. The fusion of a KDEL extension to vacuolar proteins is sufficient for their retention in the ER of transgenic plant cells. However, recent results obtained using the same strategy indicate that HDEL does not contain sufficient information for full retention of phaseolin expressed in tobacco. In the present study, an HDEL C-terminal extension was fused to the vacuolar or extracellular (Δpro) forms of sporamin. The resulting SpoHDEL or ΔproHDEL, as well as Spo and Δpro, were expressed at high levels in transgenic tobacco cells ( Nicotiana tabacum cv BY2). The intracellular location of these different forms of recombinant sporamin was studied by subcellular fractionation. The results clearly indicate that addition of an HDEL extension to either Spo or Δpro induces accumulation of these sporamin forms in a compartment that co-purifies with the ER markers NADH cytochrome C reductase, binding protein (BiP) and calnexin. In addition, a significant SpoHDEL or ΔproHDEL fraction that escapes the ER retention machinery is transported to the vacuole. From these results, it may be proposed that, in addition to its function as an ER retention signal, HDEL could also act in quality control by targeting chaperones or chaperone-bound proteins that escape the ER to the plant lysosomal compartment for degradation.  相似文献   

14.
The digestion of plant material in mammalian herbivores basically depends on the chemical and structural composition of the diet, the mean particle size to which the forage is processed, and the ingesta retention time. These different factors can be influenced by the animal, and they can presumably compensate for each other. The pygmy hippopotamus, a non-ruminating foregut fermenter, has longer mean retention times than ruminants; however hippos do not achieve higher (fibre) digestibilities on comparable diets, which could be due to ineffective mastication. We performed feeding trials with six pygmy hippos (Hexaprotodon liberiensis) and six banteng cattle (Bos javanicus) on a grass diet. As predicted, both species achieved similar dry matter, organic matter, crude protein and gross energy digestibilities. However, neutral and acid detergent fibre digestibility was lower in pygmy hippos. Apparently, in these species, fibre digestibility was more influenced by particle size, which was larger in pygmy hippos compared to banteng, than by retention time. In spite of their higher relative food intake, the banteng in this study did not have greater relative gut fills than the hippos. Ruminants traditionally appear intake-limited when compared to equids, because feed particles above a certain size cannot leave the rumen. But when compared to nonruminating foregut fermenters, rumination seems to free foregut fermenters from an intrinsic food intake limitation. The higher energy intakes and metabolic rates in wild cattle compared to hippos could have life-history consequences, such as a higher relative reproductive rate.  相似文献   

15.
Plant uptake and denitrification are considered to be the most important processes responsible for N retention and mitigation in riparian buffers. In many riparian buffers, however, nutrients taken up by plants remain in the system only temporarily and may be gradually released by mineralization later. Still, plants increase the residence time of nutrients considerably by reducing their mobility. We investigated the importance of plant N uptake and N immobilization in litter for N retention in riparian buffers. Nitrogen uptake in vegetation and N dynamics in litter were measured over a two-year period in a range of forested and herbaceous riparian buffers along a climatic gradient in Europe, receiving different loadings of N-enriched groundwater. Plant production, nitrogen uptake, and N retention were significantly higher in the forested buffer sites compared to the herbaceous buffer sites. However, in herbaceous buffers, periodic harvesting of herbaceous biomass contributed considerably to the N retention. No relationship between lateral N loading and plant productivity or N uptake was observed; this indicated that plant growth was not N-limited. In the winter period, decaying leaf litter had a small but significant role in N retention in a majority of the riparian ecosystems studied. Moreover, no responses to the climatic gradient were found. Generally, we can state that annual N retention in the vegetation and litter compartment is substantial, making up 13–99% of the total N mitigation.  相似文献   

16.
  • Excess salt affects about 955 million ha of arable land worldwide, and 49% of agricultural land is Zn‐deficient. Soil salinity and zinc deficiency can intensify plant abiotic stress. The mechanisms by which Zn can mitigate salinity effects on plant functions are not well understood.
  • We conducted an experiment to determine how Zn and salinity effects on rice plant retention of Zn, K+ and the salt ion Na+ affect chlorophyll formation, leaf cell membrane stability and grain yield. We examined the mechanisms of Zn nutrition in mitigating salinity stress by examining plant physiology and nutrition. We used native Zn‐deficient soils (control), four salinity (EC ) and Zn treatments – Zn 10 mg·kg?1 (Zn10), EC 5 dS ·m?1 (EC 5), Zn10+EC 5 and Zn15+EC 5, a coarse rice (KS ‐282) and a fine rice (Basmati‐515) in the study.
  • Our results showed that Zn alone (Zn10) significantly increased rice tolerance to salinity stress by promoting Zn/K+ retention, inhibiting plant Na+ uptake and enhancing leaf cell membrane stability and chlorophyll formation in both rice cultivars in native alkaline, Zn‐deficient soils (<  0.05). Further, under the salinity treatment (EC 5), Zn inputs (10–15 mg·kg?1) could also significantly promote rice plant Zn/K+ retention and reduce plant Na+ uptake, and thus increased leaf cell membrane stability and grain yield. Coarse rice was more salinity‐tolerant than fine rice, having significantly higher Zn/K+ nutrient retention.
  • The mechanistic basis of Zn nutrition in mitigating salinity impacts was through promoting plant Zn/K+ uptake and inhibiting plant Na+ uptake, which could result in increased plant physiological vigour, leaf cell membrane stability and rice productivity.
  相似文献   

17.
小麦是世界第一大粮食作物,在农业生产中占有重要地位.然而,由于人们为保证小麦产量往往施用大量的除草剂和杀菌剂,对环境造成了极大的危害.小麦化感作用是利用小麦活体或残体向环境中释放次生代谢物质对自身或其他生物产生作用,它克服了除草剂和杀菌剂等引起的环境污染问题,具有抑制杂草控制病害的潜力.本文对已有的小麦化感作用的研究进展情况进行了综合评述.其中小麦对杂草、虫害及病害产生防御功能的主要化感物质为异羟肟酸和酚酸类物质.小麦化感物质活性的发挥除了取决于化感物质的种类外,还由小麦自身的遗传因素、环境因素和生物因素的共同作用所决定.小麦化感物质在根际土壤中的滞留、迁移和转化过程、小麦化感作用与土壤生物的关系以及相关的作用机理是小麦化感作用研究的薄弱环节,其研究方法还需进一步探索改进.小麦化感作用在植物保护、环境保护以及作物育种等方面具有广泛的应用前景,促进了小麦抗逆性的增强以及产量和品质的提高.  相似文献   

18.
The role of polyphenols in terrestrial ecosystem nutrient cycling   总被引:3,自引:0,他引:3  
Interspecific variation in polyphenol production by plants has been interpreted in terms of defense against herbivores. Several recent lines of evidence suggest that polyphenols also influence the pools and fluxes of inorganic and organic soil nutrients. Such effects could have far-ranging consequences for nutrient competition among and between plants and microbes, and for ecosystem nutrient cycling and retention. The significance of polyphenols for nutrient cycling and plant productivity is still uncertain, but it could provide an alternative or complementary explanation for the variability in polyphenol production by plants.  相似文献   

19.
20.
The mechanisms underlying the vacuolar retention or release of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the conjugated form of the ethylene precursor, has been studied in grape (Vitis vinifera) cells grown in vitro using the technique of compartmental analysis of radioisotope elution. Following its accumulation in the vacuole, M[2,3-14C]ACC could be released from cells when the vacuolar pH was artificially lowered by external buffers from its initial value of 6.2 to below the critical pH of 5.5. Successive release and retention of vacuolar MACC could be achieved by switching the vacuolar pH from values lower and higher than 5.5. The rate constant of efflux was highly correlated with the vacuolar pH. In plant tissues having low vacuolar pH under natural conditions, e.g. apple fruits (pH 4.2) and mung bean hypocotyls (pH 5.3), an efflux of M[2,3-14C]ACC also occurred. Its rate constant closely corresponded to the theorical values derived from the correlation established for grape cells. Evidence is presented that the efflux proceeded by passive lipophilic membrane diffusion only when MACC was in the protonated form. In contrast to other organic anions like malic acid, the mono and diionic species could not permeate the tonoplast, thus indicating the strict dependence of MACC retention upon the ionic status of the molecule and the absence of carrier-mediated efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号