首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the effect of defined mutations in the mouse immunoglobulin heavy-chain enhancer after introduction into the germline of transgenic mice. We have tested a mutation of the enhancer octamer motif, a double mutation of the octamer motif and the microB-site, and a triple mutation in the microE2, microE3 and microE4-sites. All constructs are expressed in the spleen of transgenic mice. Furthermore, expression is exclusively detectable in lymphoid organs and not in several nonlymphoid tissues. Whereas mutations in the microE-sites have a more pronounced effect on transgene activity in thymocytes as compared to bone marrow and spleen cells, the octamer/microB double mutation shows significantly reduced expression levels only in B-cells. Finally, our results demonstrate that the intronic heavy-chain enhancer element does not contribute to the increase steady state levels of heavy-chain mRNA after stimulation of spleen cells with LPS.  相似文献   

2.
3.
The B-lymphocyte-specific activity of the immunoglobulin mu heavy-chain gene enhancer has been attributed to the octamer motif (ATTTGCAT) present within the enhancer that binds a B-cell-specific factor designated NF-A2/OTF-2. However, significant residual enhancer activity even after deletion of this element has suggested the presence of a second critical functional determinant. We have used deletion and mutational analyses to define an element, microB (TTTGGGGAA), that is essential for B-cell-specific enhancer activity in S194 myeloma cells in the absence of the octamer. Transfection analysis in a panel of lymphoid cell lines suggests that the presence of either microB or octamer leads to considerable enhancer activity in cell lines representing later stages of B-cell differentiation, whereas both elements are needed for function in cell lines representing earlier stages. Furthermore, in contrast to the results in pre-B-cell lines, both microB and octamer elements function independently in certain T-cell lines in which the mu enhancer is active.  相似文献   

4.
The 5' regulatory region (-345 to +1) of the rat insulin I gene (Ins-I) was examined for binding to cellular factors with short oligodeoxynucleotide probes. Over 40 binding species were detected. The binding profiles were specific for each cell type studied. We characterized the factors binding two elements crucial for enhancer activity (the Nir and Far boxes) which bear sequence similarity to the microE1, microE2, and microE3 elements of the immunoglobulin heavy-chain enhancer. The Nir box binds three cellular factors that display preferential affinities for microE1, microE2, or microE3, and the Far box binds two factors related to microE2 or microE3. The insulin gene enhancer was mutated at the Nir box element to reflect the sequences of microE1, microE2, or microE3. Ins-microE2 was fully active, Ins-microE3 was partially active, and Ins-microE1 was inactive. Thus, factors similar or identical to nuclear factor NF-microE1, NF-microE2, or NF-microE3 may play a role in the activity of the insulin gene enhancer.  相似文献   

5.
The bcl-2 gene is differentially regulated during B-cell development, with low-level expression in pre-B cells and higher-level expression in mature B cells. These changes correlate with susceptibility to cell death by apoptosis and suggest that the Bcl-2 protein may play a role in the control of cell death during B-cell development. We have identified two negative regulatory regions in the human bcl-2 5' flanking and 5' untranslated regions in pre-B cells; these regions have no significant function in mature B cells. Further investigation of these regions revealed two pre-B-cell-specific enhancer elements (pi 1 sites) in the 5' negative regulatory region and one in the 3' negative regulatory region. Mutational analysis confirmed that these three sites functioned as negative regulators of the bcl-2 promoter in the pre-B-cell line Nalm-6. Electrophoretic mobility shift assays with each of the three sites demonstrated a complex of identical mobility to that formed with the immunoglobulin heavy-chain enhancer pi 1 site. UV cross-linking experiments revealed that a protein with a molecular mass of 58 kDa bound to the three bcl-2 sites and to the immunoglobulin enhancer site. This protein reacted with an antibody against Ets family proteins. Constructs with the isolated pi 1 sites linked to the simian virus 40 promoter were used in transient transfection experiments in the pre-B-cell line. The bcl-2 sites decreased expression of the simian virus 40 promoter, while the immunoglobulin enhancer site increased its expression. The pi 1 sites in the bcl-2 gene may play a role in the developmental regulation of bcl-2 expression during B-cell differentiation.  相似文献   

6.
7.
8.
9.
10.
11.
We used a DNA-protein interaction screening method to isolate a cDNA, Erg-3, whose product binds to a site, designated pi, present in the immunoglobulin (Ig) heavy-chain gene enhancer. Erg-3 is an alternatively spliced product of the erg gene and contains an Ets DNA-binding domain. Fli-1 and PU.1, related Ets proteins, also bind to the same site. In addition, PU.1 binds to a second site, designated microB, in the Ig heavy-chain enhancer. We demonstrate that the pi binding site is crucial for Ig heavy-chain gene enhancer function. In addition, we show that Erg-3 and Fli.1, but not PU.1, can activate a reporter construct containing a multimer of protein-binding sites, synergistically with helix-loop-helix protein E12. We discuss how combinatorial interactions between members of the helix-loop-helix and Ets families may account for the tissue specificity of these proteins.  相似文献   

12.
We have begun to purify and characterize several proteins which bind to the mouse immunoglobulin heavy-chain enhancer to understand the molecular interactions important for enhancer activity. Three proteins which bind to different sites on the immunoglobulin heavy-chain enhancer have been chromatographically separated and partially purified. One protein binds a site which has not been reported previously and does not bind to other reported protein-binding sites on the immunoglobulin heavy-chain enhancer. Binding-site boundaries for the three partially purified proteins have been precisely mapped by methylation interference, DNase I footprinting, and orthophenanthroline/copper chemical nuclease footprinting. We have also characterized these three proteins with respect to dissociation rate constants.  相似文献   

13.
14.
15.
16.
Octamer motifs contribute to the function and tissue specificity of immunoglobulin heavy- and light-chain gene promoters and the heavy-chain enhancer. A variant octamer-binding site within a conserved region of the human kappa light-chain gene enhancer which contributes to the function of this enhancer has been identified.  相似文献   

17.
18.
The tissue-specific expression of immunoglobulin genes can be partially explained by a requirement for activating factors found only in B lymphocytes and their derivatives. However, loss of immunoglobulin expression upon fusion of an immunoglobulin-producing myeloma cell with a T lymphoma cell (BW5147) or fibroblast (L cell) suggests that negatively acting factors also play a role in the tissue specificity of immunoglobulin genes. Expression of a cloned immunoglobulin heavy-chain gene introduced into myeloma cells was suppressed after fusion of the myeloma transformants with BW5147. The presence of either the immunoglobulin heavy-chain enhancer or promoter conferred suppression, under similar conditions, upon a heterologous gene that is normally expressed in both B and T lymphocytes. These immunoglobulin heavy-chain gene control regions, or gene modifications induced by them, are subject to negative control by T-lymphocyte-derived factors.  相似文献   

19.
20.
The murine immunoglobulin kappa gene enhancer has previously been found to coincide with a region of altered chromatin structure reflected in a DNase I hypersensitivity site detectable on Southern blots of B-cell DNA. We examined the chromatin structure of the homologous region of human DNA using the high-resolution electroblotting method originally developed for genomic sequence analysis by G. Church and W. Gilbert (Proc. Natl. Acad. Sci. USA 81:1991-1995, 1984). Analysis of DNA isolated from cells treated in vivo with dimethyl sulfate revealed two B-cell-specific sites of enhanced guanine methylation. Both sites are located within perfect inverted repeats theoretically capable of forming cruciform structures; one of these repeats overlaps an enhancer core sequence. No enhancement or protection of guanine methylation was observed within sequences similar to sites of altered methylation previously described in the immunoglobulin heavy-chain enhancer. Treatment of isolated nuclei with DNase I or a variety of restriction endonucleases defined a B-cell-specific approximately 0.25-kilobase region of enhanced nuclease susceptibility similar to that observed in the murine kappa enhancer. The 130-base-pair DNA segment that shows high sequence conservation between human, mouse, and rabbit DNAs lies at the 5' end of the nuclease-susceptible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号