首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterotoxin B produced by Staphylococus aureus 243 in brain heart infusion broth was concentrated by dialysis against 40% polyethylene glycol (20 M), partially purified on a Sephadex G-100 column and heated at 110 degrees C in thermal death time cans. Various heating menstrua included 0.04 M Veronal buffer (pH 7.4), beef broth, and fractions of beef broth obtained by ultrafiltration or precipitation with ammonium sulfate. The toxin was assayed serologically using the microslide gel double-diffusion method. The time requiring for 90% inactivation at 110 degrees C (D110 value) obtained in buffer and in beef broth was 18 and 60 min, respectively. When the concentration of beef broth was increased fivefold, the D110 increased to 78 min. The apparent protective effect or protein was further investigated using beef broth protein obtained by precipitation with (NH4)2SO4. The D110 values were 51 and 70 min when the protein concentration in the heating menstruum was 3.8 and 7.7 mg/ml, respectively. However, when the beef broth protein was dialyzed against buffer before use as a heating menstrum, the D110 was only 39 or 41 min at comparable protein concentrations. Results indicated a dialyzable factor, whose protective effect was partially destroyed by trypsin and chymotrypsin but did not by disodium ethylenediaminetetraacetate, was involved in the protection of enterotoxin B during heating.  相似文献   

2.
AIMS: To investigate the effects of storage and the presence of a beef microflora on the thermal resistance of Salmonella serotype Typhimurium DT104 on beef surfaces and in a broth system during subsequent heat treatments after extended low-temperature storage (4 degrees C for 14 days) or mild temperature abuse (10 degrees C for 7 days). METHODS AND RESULTS: Surviving Salm. Typhimurium DT104 cells were estimated after heating in a water bath (55 degrees C) by plating beef and broth samples on tryptone soya agar and overlaying with xylose-lysine-deoxycholate agar. In beef and broth systems, D(55) values for Salm. Typhimurium DT104 stored at 4 degrees C or 10 degrees C in the presence or absence of a beef microflora were significantly lower (P < 0.01) than the D values for this organism heat-treated immediately after inoculation. In beef systems, the D(55) values were significantly lower (P < 0.05) in the presence of a beef microflora than the D(55) values obtained in 'pure' culture under all temperature/storage combinations. However, in broth systems, there was no significant difference between the D(55) values obtained in 'pure' culture and the D(55) values obtained from systems containing beef microflora. CONCLUSIONS: Storage of Salm. Typhimurium DT104 significantly reduced the thermal resistance of the pathogen in beef and broth systems. In the presence of high numbers of a Gram-negative beef microflora, the heat sensitivity of the pathogen was further increased on beef surfaces but not in broth. SIGNIFICANCE AND IMPACT OF THE STUDY: Studies investigating the survival of Salm. Typhimurium DT104 in different food systems will help define safe food preservation processes and will aid in the elimination this pathogen from the food production environments.  相似文献   

3.
Batch cultures of Shigella flexneri M4243 were grown at 37 degrees C in broth to early stationary phase, washed, and heated at 50 degrees C in 0.1 M phosphate buffer (pH 7.0). Cells were surface plated on a tryptic phytone glucose agar (TPGA), TPGA with 0.15 or 0.85% bile salts no. 3 (TPGA-BS 0.15 or TPGA-BS 0.85), or TPGA with 0.25 or 0.50% sodium deoxycholate (TPGA-DC 0.25 or TPGA-DC 0.50). Cells sampled after no heating produced colony counts on TPGA-BS 0.85 or on TPGA-DC 0.50 that were no more than about 0.5 log lower than for unheated cell samples plated on TPGA. Cells heated at 50 degrees C for 30 min produced colony counts on TPGA-DC 0.50 or on TPGA-BS 0.85 that were about 1.5 logs lower than on TPGA. Cells heated for 30 min and shifted to TPG broth at 37 degrees C to allow resuscitation required about 2 h to regain tolerance to 0.85% BS. However, heated cells resuscitated on solid TPGA at 35 degrees C before being challenged with overlays of TPGA-BS 0.85 or TPGA-DC 0.50 required 6 to 8 h on TPGA to regain tolerance to 0.85% BS or 0.50% DC. To regain tolerance to overlays of 0.15% BS or 0.25% DC, heated cells required resuscitation periods on TPGA of about 2 or 2 to 6 h, respectively. Cells heated in TPG broth and sampled after no heating produced colony counts on TPGA that were about 1.5 logs lower than for unheated cell suspensions, suggesting greater apparent injury when heat stressed in broth than in buffer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Batch cultures of Shigella flexneri M4243 were grown at 37 degrees C in broth to early stationary phase, washed, and heated at 50 degrees C in 0.1 M phosphate buffer (pH 7.0). Cells were surface plated on a tryptic phytone glucose agar (TPGA), TPGA with 0.15 or 0.85% bile salts no. 3 (TPGA-BS 0.15 or TPGA-BS 0.85), or TPGA with 0.25 or 0.50% sodium deoxycholate (TPGA-DC 0.25 or TPGA-DC 0.50). Cells sampled after no heating produced colony counts on TPGA-BS 0.85 or on TPGA-DC 0.50 that were no more than about 0.5 log lower than for unheated cell samples plated on TPGA. Cells heated at 50 degrees C for 30 min produced colony counts on TPGA-DC 0.50 or on TPGA-BS 0.85 that were about 1.5 logs lower than on TPGA. Cells heated for 30 min and shifted to TPG broth at 37 degrees C to allow resuscitation required about 2 h to regain tolerance to 0.85% BS. However, heated cells resuscitated on solid TPGA at 35 degrees C before being challenged with overlays of TPGA-BS 0.85 or TPGA-DC 0.50 required 6 to 8 h on TPGA to regain tolerance to 0.85% BS or 0.50% DC. To regain tolerance to overlays of 0.15% BS or 0.25% DC, heated cells required resuscitation periods on TPGA of about 2 or 2 to 6 h, respectively. Cells heated in TPG broth and sampled after no heating produced colony counts on TPGA that were about 1.5 logs lower than for unheated cell suspensions, suggesting greater apparent injury when heat stressed in broth than in buffer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A constitutive beta-glucosidase of Erwinia herbicola Y46 was studied as a prerequisite to an assessment of its significance in the release of bacteriotoxic aglycones from plant beta-glucosides, and the possible effects of the aglycones on the course of such plant diseases as "fire-blight". The enzyme was purified 86.5-fold from crude extracts of cells grown on yeast beef broth. Ammonium sulfate precipitation, DEAE-cellulose fractionation, and gel filtration through Sephadex G-100 resulted in a preparation having one peak of activity on isoelectrofocussing, on gel filtration through Sephadex G-200, and on polyacrylamide gel electrophoresis. The latter techniques demonstrated, in addition to the major protein band associated with activity, a single minor impurity. The enzyme was active against p-nitrophenyl-beta-glucoside (p-NPG) and phloridzin, but showed only very slight activity against salicin and arbutin, and no detectable activity against beta-methyl-D-glucoside, cellobiose, lactose, and esculin. The production of beta-glucosidase was maximum at the late log phase of growth on yeast beef broth medium and declined somewhat thereafter. The incorporation of inducers (carbohydrates) in defined basal medium resulted in only small variations in specific activity in the resulting cells; The activity (p-NPG substrate) was not inhibited by D-glucose, phloretin, esculin, salicin, arbutin, lactose, or cellobiose, but was slightly inhibited by 1.0 mM phloridzin. Slight inhibition was observed in the presence of sulfhydryl reagents (iodoacetamide, p-chloromercuribenzoate), but sodium azide, ethylene-diaminetetraacetic acid, Cu2+, and Zn2+ ions produced no effect. The activity was stable, in both crude and purified preparations, over the pH ranges 6.0-7.5 (100% activity) and 4.5-greater than 8.5 (50% activity). The enzyme retained 80% activity after 30 min at 50 degrees C, but only 25% after 30 min at 60 degrees C. The enzyme had a mean K-m value (phloridzin) of 1.35 times 10-4 M, an isoelectric point of 4.75, a molecular weight, determined by Sephadex G-200 gel filtration, of about 122 000, and an optimum pH for activity of 6.5-7.0.  相似文献   

6.
The exposure of exponentially grown Escherichia coli K12 to 52 degrees C for 30 min in Tris/Mg2+ buffer resulted in a considerable loss of viability when plated on tryptone agar. When such heated bacteria were held at 37 degrees C for 2 h in tryptone broth before plating on tryptone agar, there was a significant increase in viability. Thus, heat damage was repaired in tryptone broth but not on tryptone agar. Recovery was greater in tryptone broth than in synthetic medium. In tryptone broth, recA or polA mutants also recovered but a lex mutant did not. As a result of heating, the sensitivity of bacteria to ultraviolet radiation (u.v.), to mitomycin C and to plating on high salt medium was enhanced. After incubation for 2 h in tryptone broth at 37 degrees C, the bacteria regained their resistance to u.v. and mitomycin C and tolerance to high salt medium. Recovery of viability required RNA and protein synthesis, whereas recovery of u.v. resistance did not require protein synthesis. Heating for 30 min inhibited the release of acid-soluble material from DNA in all strains of E. coli used.  相似文献   

7.
Procedures were developed to evaluate thermal injury to three strains of Yersinia enterocolitica (serotypes 0:3, 0:8, and 0:17). Serotype 0:17 (atypical strain) was more sensitive to bile salts no. 3 (BS) and to sublethal heat treatment than the typical strains, 0:3 and 0:8. When the 0:3, 0:8, and 0:17 serotypes were thermally stressed in 0.1 M PO4 buffer, pH 7.0, at 47 degrees C for 70, 60, and 12 min, respectively, greater than 99% of the total viable cell population was injured. Injury was determined by the ability of cells to form colonies on brain heart infusion (BHI) agar, but not on Trypticase soy agar (TSA) plus 0.6% BS for serotypes 0:3 and 0:8 and TSA plus 0.16% BS for 0:17. Heat injury of serotype 0:17 cells for 15 min in 0.1 M PO4 buffer caused an approximate 1,000-fold reduction in cell numbers on selective media as compared with cells heated in pork infusion (PI), BHI broth, and 10% nonfat dry milk (NFDM). The extended lag and resuscitation period in BHI broth was 2.5 times greater for 0:17 cells injured in 0.1 M PO4 than for cells injured in BHI or PI. The rate and extent of repair of Y. enterocolitica 0:17 cells in three recovery media were directly related to the heating menstruum used for injury. The use of metabolic inhibitors demonstrated that ribonucleic acid synthesis was required for repair, whereas deoxyribonucleic, cell wall, and protein synthesis were not necessary for recovery of 0:17 cells injured in 0.1 M PO4 buffer, BHI, or PI. Inhibition of respiration by 2,4-dinitrophenol slowed repair only for 0:17 cells injured in 0.1 M PO4 buffer, not for cells injured in PI or BHI.  相似文献   

8.
Thermal injury of Yersinia enterocolitica.   总被引:3,自引:3,他引:0       下载免费PDF全文
Procedures were developed to evaluate thermal injury to three strains of Yersinia enterocolitica (serotypes 0:3, 0:8, and 0:17). Serotype 0:17 (atypical strain) was more sensitive to bile salts no. 3 (BS) and to sublethal heat treatment than the typical strains, 0:3 and 0:8. When the 0:3, 0:8, and 0:17 serotypes were thermally stressed in 0.1 M PO4 buffer, pH 7.0, at 47 degrees C for 70, 60, and 12 min, respectively, greater than 99% of the total viable cell population was injured. Injury was determined by the ability of cells to form colonies on brain heart infusion (BHI) agar, but not on Trypticase soy agar (TSA) plus 0.6% BS for serotypes 0:3 and 0:8 and TSA plus 0.16% BS for 0:17. Heat injury of serotype 0:17 cells for 15 min in 0.1 M PO4 buffer caused an approximate 1,000-fold reduction in cell numbers on selective media as compared with cells heated in pork infusion (PI), BHI broth, and 10% nonfat dry milk (NFDM). The extended lag and resuscitation period in BHI broth was 2.5 times greater for 0:17 cells injured in 0.1 M PO4 than for cells injured in BHI or PI. The rate and extent of repair of Y. enterocolitica 0:17 cells in three recovery media were directly related to the heating menstruum used for injury. The use of metabolic inhibitors demonstrated that ribonucleic acid synthesis was required for repair, whereas deoxyribonucleic, cell wall, and protein synthesis were not necessary for recovery of 0:17 cells injured in 0.1 M PO4 buffer, BHI, or PI. Inhibition of respiration by 2,4-dinitrophenol slowed repair only for 0:17 cells injured in 0.1 M PO4 buffer, not for cells injured in PI or BHI.  相似文献   

9.
The heat destruction characteristics of Clostridium botulinum spores suspended in tomato juice and phosphate buffer were determined by the survivor curve method with aluminum thermal death time tubes. Two type A strains of C. botulinum and a type B strain were evaluated. Strains A16037 and B15580 were implicated in outbreaks of botulism involving home-canned tomato products. Strain A16037 had a higher heat resistance than either 62A or B15580. The mean thermal resistance (D-values) for A16037 in tomato juice (pH 4.2) were: 115.6 degrees C, 0.4 min; 110.0 degrees C, 1.6 min; and 104.4 degrees C, 6.0 min. The mean D-values for A16037 in Sorensen 0.067 M phosphate buffer (pH 7) were: 115.6 degrees C, 1.3 min; 110.0 degrees C, 4.4 min; and 104.4 degrees C, 17.6 min. At each test temperature, the D-values were approximately three times higher in buffer than in tomato juice. The z-value for C. botulinum A16037 spores in tomato juice was 9.4 degrees C, and in buffer the z-value was 9.9 degrees C. The use of aluminum thermal death time tubes in a miniature retort system makes it possible to determine survivor curves for C. botulinum spores at 121.1 degrees C. This is possible because the lag correction factor for the aluminum tubes is only about 0.2 min, making possible heating times as short as 0.5 min.  相似文献   

10.
Immunochemical studies on thermal denaturation of ovomucoid   总被引:1,自引:0,他引:1  
The thermal denaturation of ovomucoid was investigated by immunochemical methods, namely immunoprecipitation analyses and antibody-Sepharose 4B column chromatography. In the immunoprecipitation analyses, heated ovomucoid (90 degrees C, 90 min, pH 7.2) required about twice the antigen addition of the native protein to approach maximal precipitation with specific antibody, and the maximal immunoprecipitation was decreased to 80% of that by native ovomucoid. However, heated protein inhibited the binding of antibody with native ovomucoid, and 100% inhibition was attained at about 4-times the antigen addition necessary for the native protein. Heated ovomucoid (100 degrees C, 120 min) showed little immunoprecipitation and inhibition. To ovomucoid antigenicity was diminished more slowly than the trypsin inhibitory activity by heating, e.g., heated ovomucoid (90 degrees C, 120 min) retained more than 30% of the antigenicity but little trypsin inhibitory activity. By passing through the immunoaffinity column, heated ovomucoid (90 degrees C, 90 min) was separated into two fractions, either with (fraction II) or without (fraction I) antigenicity. Fraction II contained smaller fractions of ordered secondary structure than native ovomucoid, and trypsin inhibitory activity of fraction II was only 24% of the native one. These results indicated that thermally denatured ovomucoid was heterogeneous regarding the conformational damage caused by heating, and the structure around some antigenic sites in an ovomucoid molecule was retained even after the backbone conformation was partially destroyed and trypsin inhibitory activity was lost.  相似文献   

11.
The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators.  相似文献   

12.
D-values were obtained for Listeria monocytogenes and Yersinia enterocolitica at 50, 55 and 60 degrees C in vacuum-packed minced beef samples heated in a laboratory water-bath. The experiment was repeated using vacutainers, which allowed heating of the beef to the desired temperature before inoculation. D-values of between 0.15 and 36.1 min were obtained for L. monocytogenes. Pre-heating the beef samples significantly affected (P < 0.05) the D60 value only. D-values for Y. enterocolitica ranged from 0.55 to 21.2 min and all the D-values were significantly different (P < 0.05) after pre-heating. In general, the D-values obtained for core inoculated solid beef samples were significantly higher (P < 0.05) than those generated in minced beef when heated in a Barriquand Steriflow commercial retort.  相似文献   

13.
The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators.  相似文献   

14.
The acidic Protease was extracted from the intestine of the grass carp (Ctenopharyngodon idellus) by 0.1 M sodium phosphate buffer, pH 7.0 at 4 degrees C after neat intestine was defatted with acetone, and partially purified by ammonium sulfate precipitation, gel filtration chromatography and ionic exchange chromatography. SDS-PAGE electrophoresis showed that the enzyme was homogeneous with a relative molecular mass of 28,500. Substrate-PAGE at pH7.0 showed that the purified acidic protease has only an active component. Specificity and inhibiting assays showed that it should be a cathepsin D. The optimal pH and optimal temperature of the enzyme were pH2.5 and 37 degrees C, respectively. It retained only 20% of its initial activity after incubating at 50 degrees C for 30 min. The enzyme lost 81% of its activity after incubation with pepstatin A at room temperature, but was not inhibited by soybean trypsin inhibitor or phenylmethylsulfonyl fluoride (PMSF). Its V(max) and K(m) values were determined to be 3.57 mg/mL and 0.75 min(-1), respectively.  相似文献   

15.
A strain of Listeria monocytogenes isolated from a drain in a food-processing plant was demonstrated, by determination of D values, to be more resistant to the lethal effect of heat at 56 or 59 degrees C following incubation for 45 min in tryptose phosphate broth (TPB) at pH 12.0 than to that of incubation for the same time in TPB at pH 7.3. Cells survived for at least 6 days when they were suspended in TPB at pHs 9.0, 10.0, and 11.0 and stored at 4 or 21 degrees C. Cells of L. monocytogenes incubated at 37 degrees C for 45 min and then stored for 48 or 144 h in TPB at pH 10.0 were more resistant to heat treatment at 56 degrees C than were cells stored in TPB at pH 7.3. The alkaline-stress response in L. monocytogenes may induce resistance to otherwise lethal thermal-processing conditions. Treatment of cells in 0.05 M potassium phosphate buffer (pH 7.00 +/- 0.05) containing 2.0 or 2.4 mg of free chlorine per liter reduced populations by as much as 1.3 log(10) CFU/ml, while treatment with 6.0 mg of free chlorine per liter reduced populations by as much as 4.02 log(10) CFU/ml. Remaining subpopulations of chlorine-treated cells exhibited some injury, and cells treated with chlorine for 10 min were more sensitive to heating at 56 degrees C than cells treated for 5 min. Contamination of foods by L. monocytogenes cells that have survived exposure to processing environments ineffectively cleaned or sanitized with alkaline detergents or disinfectants may have more severe implications than previously recognized. Alkaline-pH-induced cross-protection of L. monocytogenes against heat has the potential to enhance survival in minimally processed as well as in heat-and-serve foods and in foods on holding tables, in food service facilities, and in the home. Cells surviving exposure to chlorine, in contrast, are more sensitive to heat; thus, the effectiveness of thermal processing in achieving desired log(10)-unit reductions is not compromised in these cells.  相似文献   

16.
Metal-free concanavalin A is readily and irreversibly inactivated by temperatures above 60 degrees. Manganese ion completely prevents the thermal aggregation of the protein at 60 and 70 degrees, and partially protects at 80 degrees, but shows no protective properties at 90 degrees. Managanese protection against thrermal aggregation was found to be maximal at pH 4-8. The precipitation between glycogen and Mn2+-stabilized conanavian A is partially inhibited at temperatures greater than 30 degrees, but can be reversed by cooling to room temperature...  相似文献   

17.
Lactobacillus helveticus 1829 produced an antimicrobial agent, designated helveticin V-1829, that demonstrated antagonistic activity against closely-related species. The agent was excreted into MRS agar, and was present in the supernatant fluids from both overnight broth and clotted milk cultures. It was heat labile (inactivated by 50 degrees C for 30 min) and was stable over the pH range 2.5 to 6.5. Production of the substance was pH-dependent and maximum yields were obtained in MRS broth cultures maintained at pH 5.5. Helveticin V-1829 was partially purified following growth of the producing strain in a semi-defined MRS medium and precipitating the cell-free filtrate with ammonium sulphate to 30% saturation. The cleared supernatant fluid was then brought to 60% saturation and the resulting precipitate pelleted and dialysed in 0.3 mol/l phosphate buffer. The partially purified inhibitor was sensitive to several proteolytic enzymes, and it was bactericidal in its mode of action against indicator cells of Lact. helveticus 1844 and Lact. delbrueckii subsp. bulgaricus 1489, indicating that it was a bacteriocin. A DNA probe specific for the helveticin J structural gene failed to hybridize to total genomic DNA of Lact. helveticus 1829, indicating that helveticin V-1829 is not significantly related to helveticin J.  相似文献   

18.
Bacillus subtilis spores were suspended in 0.1% NaCl solution (ca. 10(7) CFU/mL) and treated by conventional or ohmic heating under identical temperature histories. Temperatures tested were in the range of 88 to 99 degrees C. Survival curves and calculated D values showed significantly higher lethality for spores by ohmic than conventional heating. The z or Ea values corresponding to the two heating methods, however, were not significantly different. Spores of B. subtilis were suspended in nutrient broth and treated with conventional and ohmic heating through a single- or a double-stage treatment. In case of double-stage treatment, heating was interrupted by a 20 min of incubation at 37 degrees C to induce a Tyndallization effect. Spore inactivation during double-stage treatment was greater for ohmic than conventional heating. The enhanced spore inactivation by ohmic, compared with conventional, heating resulted from a greater rate of spore death during the first stage of heating and greater decrease in count of viable spores immediately after the incubation period that intervened the heating process. Thus it is concluded that spore inactivation during ohmic heating was primarily due to the thermal effect but there was an additional killing effect caused by the electric current.  相似文献   

19.
The resistance of Salmonella thompson to heating at 54° or 60°C in tryptone soya broth, liquid whole egg, 10% or 40% reconstituted dried milk or minced beef was increased if cells were held at 48°C for 30 min before heating at the higher temperatures. Induction of thermotolerance by mild heat shock is thus not confined to cells grown and heated in broth systems. The heat shock phenomenon may therefore have implications for the safety of foods given marginal heat treatment.  相似文献   

20.
Trehalase (alpha,alpha-Trehalose glucohydrolase, EC 3.2.1.28) was partially solubilized from the thermophilic fungus Humicola lanuginosa RM-B, and purified 184-fold. The purified enzyme was optimally active at 50 degrees C in acetate buffer at pH 5.5. It was highly specific for alpha,alpha-trehalose and had an apparent Km = 0.4 mM at 50 degrees C. None of the other disaccharides tested either inhibited or activated the enzyme. The molecular weight of the enzyme was around 170 000. Trehalase from mycelium grown at 40 and 50 degrees C had similar properties. The purified enzyme, in contrast to that in the crude-cell free extract, was less stable. At low concentration, purified trehalase was afforded protection against heat-inactivation by "protection against heat-inactivation by "protective factor(s)" present in mycelial extracts. The "protective factor(s)" was sensitive to proteolytic digestion. It was not diffusible and was stable to boiling for at least 30 min. Bovine serum albumin and casein also protected the enzyme from heat-inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号