首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a photocross-linking approach we have investigated the cytosolic and membrane components involved in the targeting and insertion of signal-anchor proteins into the membrane of the ER. The nascent chains of both type I and type II signal-anchor proteins can be cross-linked to the 54-kD subunit of the signal recognition particle. Upon addition of rough microsomes the type I and type II signal-anchor proteins interact with a number of components. Both types of protein interact with an integral membrane protein, the signal sequence receptor, previously identified by its proximity to preprolactin during its translocation (Wiedmann, M., T.V. Kurzchalia, E. Hartmann, and T.A. Rapoport. 1987. Nature [Lond.] 328:830-833). Three proteins, previously unidentified, were found to be cross-linked to the nascent chains of the signal-anchor proteins. Among them was a 37-kD protein that was found to be the main component interacting with the type I SA protein used. These proteins were not seen in the absence of membranes suggesting they are components of the ER. The ability of the nascent chains to be cross-linked to these identified proteins was shown to be abolished by prior treatment with agents known to disrupt translocation intermediates or ribosomes. We propose that the newly identified proteins function either in the membrane insertion of only a subset of proteins or only at a specific stage of insertion.  相似文献   

2.
The membrane location of the Semliki Forest virus glycoproteins E1, E2 and E3 was studied by protease treatment of (1) virus particles and (2) rough micro somes from cells infected with SF virus2. Protease treatment of virus particles removes all but the membrane-associated segments of the glycoproteins. Analyses of protease-treated SF virus membranes in 15% to 22.5% gradient acrylamide gels demonstrate the presence of three distinct peptide species with apparent molecular weights of 9000, 6000 and 5500. The 9000 and the 5500 molecular weight peptides have been aligned to the COOH-terminal end of E2 and the 6000 molecular weight peptide to the COOH-terminal end of El. The mapping of the peptides was done in a “Dintzis”-type of experiment (Dintzis, 1961) where we labelled the proteins of the virus with a gradient of [35S]methionine increasing towards their COOH-terminal end.Protease treatment of microsomes from cells infected with SF virus removes only those parts of the viral glycoproteins that are transversing the lipid bilayer. Analyses of such treated membranes in sodium dodecyl sulphate-containing gels show that a 3000 molecular weight piece is digested from the COOH-terminal end of p62, the cellular precursor of E2 and E3. The COOH-terminus of p62 is shown to be equivalent to that of E2. These results thus demonstrate that the two amphiphilic membrane proteins of SF virus, E1 and E2 (p62) are attached to the lipid bilayer by their COOH-terminal ends. The COOH-terminal end of p62 (E2) spans the microsomal membrane. The third membrane protein, E3, probably does not interact with membrane lipids but is bound to the virus on E1 and (or) E2.  相似文献   

3.
Higy M  Gander S  Spiess M 《Biochemistry》2005,44(6):2039-2047
Signal sequences for insertion of protein into the mammalian endoplasmic reticulum orient themselves in the translocon on the basis of their flanking charges. It has recently been shown that hydrophobic N-terminal signals initially insert head-on before they invert their orientation to translocate the C-terminus. The rate of inversion is reduced with the increasing hydrophobicity of the signal due to an increased affinity for the initial bound state at the translocon. To probe the environment of the signal while its orientation is determined, different hydrophobic residues were inserted at various positions throughout a uniform oligoleucine signal sequence and the constructs were expressed in transfected COS-7 cells. The resulting topologies revealed a strikingly symmetric position dependence specifically for bulky aromatic amino acids, reflecting the structure of a lipid bilayer. Maximal N-translocation was observed when the guest residues were placed at the N- or C-terminus of the hydrophobic sequence or in the very center, corresponding to the positions of highest expected affinity of the signal sequence as a membrane-spanning helix for the bilayer. The results support the model that during topogenesis in vivo the signal sequence is exposed to the lipid membrane.  相似文献   

4.
In topogenesis of membrane proteins on the endoplasmic reticulum, the orientation of the hydrophobic transmembrane (TM) segment is influenced by the charge of the flanking amino acid residues. We assessed the function of the positive charges downstream of the hydrophobic segment using synaptotagmin II. The positive charges were systematically replaced with non-charged residues. Although the original TM segment translocated the N terminus, the topology was inverted, depending on the mutations. Orientation was affected in mutants in which 6 Lys were shifted downstream, even when the 6 Lys were 25 residues from the hydrophobic segment. The Lys was functionally replaced by Arg, but not by Asp or Glu. The timing of action during polypeptide elongation indicated that the Lys functions at the ribosome exit sites. We suggest that the commitment of the TM segment to a particular orientation is influenced by far downstream parts of the polypeptide chain and that the positive charges are decoded after exiting the ribosome.  相似文献   

5.
Leader peptidase, an integral transmembrane protein of Escherichia coli, is synthesized without a cleavable amino-terminal leader peptide. Of the five domains that participate in the membrane assembly of this protein, one is an internal "signal" region. We have used oligonucleotide-directed mutagenesis to examine the properties of the internal signal that are crucial for leader peptidase assembly. For this purpose, the net charge at the amino terminus of the internal signal was changed from +2 to +1 and -1 and, at the carboxyl terminus of the signal, from 0 to -1 or +1. These mutations had no effect on the membrane assembly of leader peptidase, suggesting that the charges have little role in the signal function. The apolar core of this signal was disrupted by substitution of basic amino acids for apolar residues. Substitution of an arginyl residue at position 70, or two arginyl residues at position 67 and 69, prevented membrane assembly. However, substitution of an arginyl residue at position 66 or either arginyl or lysyl residue at position 68 was without effect. Thus, while the apolar character of the internal signal is important, the precise position of a charged residue determines its effect on assembly.  相似文献   

6.
In yeast, there are at least two vesicle populations upon ER (endoplasmic reticulum) exit, one containing Gap1p (general aminoacid permease) and a glycosylated alpha-factor, gpalphaF (glycosylated proalpha-factor), and the other containing GPI (glycosylphosphatidylinositol)-anchored proteins, Gas1p (glycophospholipid-anchored surface protein) and Yps1p. We attempted to identify sorting determinants for this protein sorting event in the ER. We found that mutant Gas1 proteins that lack a GPI anchor and/or S/T region (serine- and threonine-rich region), two common characteristic features conserved among yeast GPI-anchored proteins, were still sorted away from Gap1p-containing vesicles. Furthermore, a mutant glycosylated alpha-factor, gpalphaGPI, which contains both the GPI anchor and S/T region from Gas1p, still entered Gap1p-containing vesicles, demonstrating that these conserved characteristics do not prevent proteins from entering Gap1p-containing vesicles. gpalphaF showed severely reduced budding efficiency in the absence of its ER exit receptor Erv29p, and this residual budding product no longer entered Gap1p-containing vesicles. These results suggest that the interaction of gpalphaF with Erv29p is essential for sorting into Gap1p-containing vesicles. We compared the detergent solubility of Gas1p and the gpalphaGPI in the ER with that in ER-derived vesicles. Both GPI-anchored proteins similarly partitioned into the DRM (detergent-resistant membrane) in the ER. Based on the fact that they entered different ER-derived vesicles, we conclude that DRM partitioning of GPI-anchored proteins is not the dominant determinant of protein sorting upon ER exit. Interestingly, upon incorporation into the ER-derived vesicles, gpalphaGPI was no longer detergent-insoluble, in contrast with the persistent detergent insolubility of Gas1p in the ER-derived vesicles. We present different explanations for the different behaviours of GPI-anchored proteins in distinct ER-derived vesicle populations.  相似文献   

7.
8.
9.
10.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

11.
12.
The NH2-and COOH-terminal sequences of the angiotensin-converting enzymes from rabbit lung and testis have been determined using less than 0.6mg of each protein. They are: (NH2)Thr-Leu-Asp-Pro-Gly-Leu-Leu-Pro-Gly-Asp- and -(Phe, Tyr)-Ser-Leu-Ala(COOH) for the pulmonary enzyme; and (NH2)Arg-Arg-Val-Ser-Asn-Asn-Gln-Ser-Ser- and -(Phe, Ala)-Glu-Leu-Ser(COOH) for the enzyme from testis.  相似文献   

13.
《The Journal of cell biology》1987,105(6):2905-2914
In Saccharomyces cerevisiae, nascent carboxypeptidase Y (CPY) is directed into the endoplasmic reticulum by an NH2-terminal signal peptide that is removed before the glycosylated protein is transported to the vacuole. In this paper, we show that this signal peptide does not function in mammalian cells: CPY expressed in COS-1 cells is not glycosylated, does not associate with membranes, and retains its signal peptide. In a mammalian cell-free protein-synthesizing system, CPY is not translocated into microsomes. However, if the CPY signal is either mutated to increase its hydrophobicity or replaced with that of influenza virus hemagglutinin, the resulting precursors are efficiently translocated both in vivo and in vitro. The implications of these results for models of signal sequence function are discussed.  相似文献   

14.
15.
16.
To understand the structural nature of signal sequence recognition by the preprotein translocase SecA, we have characterized the interactions of a signal peptide corresponding to a LamB signal sequence (modified to enhance aqueous solubility) with SecA by NMR methods. One-dimensional NMR studies showed that the signal peptide binds SecA with a moderately fast exchange rate (Kd approximately 10(-5) m). The line-broadening effects observed from one-dimensional and two-dimensional NMR spectra indicated that the binding mode does not equally immobilize all segments of this peptide. The positively charged arginine residues of the n-region and the hydrophobic residues of the h-region had less mobility than the polar residues of the c-region in the SecA-bound state, suggesting that this peptide has both electrostatic and hydrophobic interactions with the binding pocket of SecA. Transferred nuclear Overhauser experiments revealed that the h-region and part of the c-region of the signal peptide form an alpha-helical conformation upon binding to SecA. One side of the hydrophobic core of the helical h-region appeared to be more strongly bound in the binding pocket, whereas the extreme C terminus of the peptide was not intimately involved. These results argue that the positive charges at the n-region and the hydrophobic helical h-region are the selective features for recognition of signal sequences by SecA and that the signal peptide-binding site on SecA is not fully buried within its structure.  相似文献   

17.
The sensitivity of bacteriophage T4 lysozyme function to amino acid substitutions at defined positions in and around the longitudinal, hydrophobic strips of 9 alpha-helices was assessed after systematic replacement of each residue in the protein with a series of 13 amino acids. The hydrophobic strips were defined by identifying the longitudinal sectors in the helices with the highest mean residue hydrophobicities. Sensitivity to mutation (the percentage of replacements leading to loss of function) was calculated for each residue in the following positions: whole protein, helices, hydrophobic strips, other positions within the helices, and various positions within the hydrophobic strips as well as their extensions beyond the helices. Substitutions at positions in the hydrophobic strips led more frequently to loss of function than substitutions in the protein as a whole. One subset, the COOH-terminal hydrophobic strip residues, is apparently critical; substitutions of these residues (but not of their NH2-terminal counterparts) led at least as frequently to loss of function as substitutions of solvent-inaccessible residues, and nearly as frequently as substitutions of the most highly conserved residues.  相似文献   

18.
To identify proteins that interact with HSP47, an endoplasmic reticulum (ER)-resident molecular chaperone, a yeast two-hybrid screening was performed using mouse full-length HSP47 including an N-terminal signal sequence as a bait. Analysis of several positive clones led to the identification and cloning of a novel gene, ubin, encoding a ubiquitin-like protein. Unlike other ubiquitin-like proteins, UBIN was shown to interact with signal sequences of various secretory and ER-luminal proteins, including HSP47, but not interact with signal sequences of mitochondrial targeting in two-hybrid system. The possible function of UBIN will be discussed with regards to novel characteristics of binding to signal sequences for ER targeting.  相似文献   

19.
In addition to their essential roles in V(D)J recombination, the RAG proteins have been found to catalyze transposition in vitro, but it has been difficult to demonstrate transposition by the RAG proteins in vivo in vertebrate cells. As genomic instability and chromosomal translocations are common outcomes of transposition in other species, it is critical to understand if the RAG proteins behave as a transposase in vertebrate cells. To facilitate this, we have developed an episome-based assay to detect products of RAG-mediated transposition in the human embryonic kidney cell line 293T. Transposition events into the target episome, accompanied by characteristic target site duplications, were detected at a low frequency using RAG1 and either truncated "core" RAG2 or full-length RAG2. More frequently, insertion of the RAG-generated signal end fragment into the target was accompanied by deletions or more complex rearrangements, and our data indicate that these events occur by a mechanism that is distinct from transposition. An assay to detect transposition from an episome into the human genome failed to detect bona fide transposition events but instead yielded chromosome deletion and translocation events involving the signal end fragment mobilized by the RAG proteins. These assays provide a means of assessing RAG-mediated transposition in vivo, and our findings provide insight into the potential for the products of RAG-mediated DNA cleavage to cause genome instability.  相似文献   

20.
By heteroduplex and hybridization analysis we showed that the inverted repetition (here called IS10) at the ends of the translocatable tetracycline resistance element Tn10 is not IS3, as had previously been reported by Ptashne and Cohen (J. Bacteriol. 122:776--781, 1975). Further analysis confirmed the homology between IS3 and the alpha beta sequence of F and demonstrated that IS10 was not present in the genomes of Salmonella typhimurium LT2 or Escherichia coli K-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号