首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaperones involved in hepatitis B virus morphogenesis   总被引:3,自引:0,他引:3  
Little is known about host cell factors necessary for hepatitis B virus (HBV) assembly which involves envelopment of cytosolic nucleocapsids by the S, M and L transmembrane viral envelope proteins and subsequent budding into intraluminal cisternae. Central to virogenesis is the L protein that mediates hepatocyte receptor binding and envelopment of capsids. To serve these topologically conflicting roles, L protein exhibits an unusual dual membrane topology, disposing its N-terminal preS domain inside and outside of the virion lipid envelope. The mixed topology is achieved by posttranslational preS translocation of about half of the L protein molecules across a post-endoplasmic reticulum membrane. Here we identify and characterize a preS-specific sequence that confers the suppression of cotranslational translocation even of a model reporter. This cytosolic anchorage sequence specifically binds the cognate heat shock protein Hsc70, thus indicating chaperone participitation in HBV morphogenesis. Conversely, the M envelope protein needs the assistance of the chaperone calnexin for proper folding and trafficking. Calnexin selectively binds to the N-glycan, specific for M, rather than to the N-glycan, common to all three envelope proteins. As inhibition of the calnexin-M interaction blocks the secretion of viral envelopes, we propose an essential role for calnexin, as well as for Hsc70, in chaperoning HBV assembly.  相似文献   

2.
Mutations in the S region of the hepatitis B virus (HBV) envelope gene are associated with immune escape, occult infection, and resistance to therapy. We previously identified naturally occurring mutations in the S gene that alter HBV virion secretion. Here we used transcomplementation assay to confirm that the I110M, G119E, and R169P mutations in the S domain of viral envelope proteins impair virion secretion and that an M133T mutation rescues virion secretion of the I110M and G119E mutants. The G119E mutation impaired detection of secreted hepatitis B surface antigen (HBsAg), suggesting immune escape. The R169P mutant protein is defective in HBsAg secretion as well and has a dominant negative effect when it is coexpressed with wild-type envelope proteins. Although the S domain is present in all three envelope proteins, the I110M, G119E, and R169P mutations impair virion secretion through the small envelope protein. Conversely, coexpression of just the small envelope protein of the M133T mutant could rescue virion secretion. The M133T mutation could also overcome the secretion defect caused by the G145R immune-escape mutation or mutation at N146, the site of N-linked glycosylation. In fact, the M133T mutation creates a novel N-linked glycosylation site ((131)NST(133)). Destroying this site by N131Q/T mutation or preventing glycosylation by tunicamycin treatment of transfected cells abrogated the effect of the M133T mutation. Our findings demonstrate that N-linked glycosylation of HBV envelope proteins is critical for virion secretion and that the secretion defect caused by mutations in the S protein can be rescued by an extra glycosylation site.  相似文献   

3.
Cells replicating the human hepatitis B virus (HBV) express high levels of degradation‐enhancing α‐mannosidase‐like proteins (EDEMs), a family of proteins involved in the endoplasmic reticulum associated degradation, one of the pathways activated during the unfolded protein response. Owing to their α‐1,2 mannosidase activity, the EDEM1–3 proteins are able to process the N‐linked glycans of misfolded or incompletely folded proteins, providing the recognition signal for their subsequent degradation. The HBV small (S), medium (M), and large (L) surface proteins bear an N‐linked glycosylation site in the common S domain that is partially occupied in all proteins. The M protein contains an additional site in its preS2 domain, which is always functional. Here, we report that these oligosaccharides are processed by EDEMs, more efficiently by EDEM3, which induces degradation of L and S proteins, accompanied by a reduction of subviral particles production. In striking contrast, M not only is spared from degradation but its trafficking is also accelerated leading to an improved secretion. This unusual behavior of the M protein requires strictly the mannose trimming of the preS2 N‐linked glycan. Furthermore, we show that HBV secretion is significantly inhibited under strong endoplasmic reticulum stress conditions when M expression is prevented by mutagenesis of the viral genome. These observations unfold unique properties of the M protein in the HBV life cycle during unfolded protein response and point to alternative mechanisms employed by EDEMs to alleviate this stress in case of necessity by promoting glycoprotein trafficking rather than degradation.  相似文献   

4.
The potassium ion channel Kv3.1b is a member of a family of voltage‐gated ion channels that are glycosylated in their mature form. In the present study, we demonstrate the impact of N‐glycosylation at specific asparagine residues on the trafficking of the Kv3.1b protein. Large quantities of asparagine 229 (N229)‐glycosylated Kv3.1b reached the plasma membrane, whereas N220‐glycosylated and unglycosylated Kv3.1b were mainly retained in the endoplasmic reticulum (ER). These ER‐retained Kv3.1b proteins were susceptible to degradation, when co‐expressed with calnexin, whereas Kv3.1b pools located at the plasma membrane were resistant. Mass spectrometry analysis revealed a complex type Hex3HexNAc4Fuc1 glycan as the major glycan component of the N229‐glycosylated Kv3.1b protein, as opposed to a high‐mannose type Man8GlcNAc2 glycan for N220‐glycosylated Kv3.1b. Taken together, these results suggest that trafficking‐dependent roles of the Kv3.1b potassium channel are dependent on N229 site‐specific glycosylation and N‐glycan structure, and operate through a mechanism whereby specific N‐glycan structures regulate cell surface expression.  相似文献   

5.
The addition and endoplasmic reticulum (ER) glucosidase processing of N-linked glycans is essential for the secretion of rat hepatic lipase (HL). Human HL is distinct from rat HL by the presence of four as opposed to two N-linked carbohydrate side chains. We examined the role of N-linked glycosylation and calnexin interaction in human HL secretion from Chinese hamster ovary (CHO) cells stably expressing a human HL cDNA. Steady-state and pulse-chase labeling experiments established that human HL was synthesized as an ER-associated precursor containing high mannose N-linked glycans. Secreted HL had a molecular mass of approximately 65 kDa and contained mature N-linked sugars. Inhibition of N-linked glycosylation with tunicamycin (TM) prevented secretion of HL enzyme activity and protein mass. In contrast, incubation of cells with the ER glucosidase inhibitor, castanospermine (CST), decreased human HL protein secretion by 60%, but allowed 40% of fully active HL to be secreted. HL protein mass and enzyme activity were also recovered from the media of a CHO-derivative cell line genetically deficient in ER glucosidase I activity (Lec23) that was transiently transfected with a human HL cDNA. Co-immunoprecipitation experiments demonstrated that newly synthesized human HL bound to the lectin-like ER chaperone, calnexin, and that this interaction was inhibited by TM and CST. These results suggest that under normal conditions calnexin may increase the efficiency of HL export from the ER. Whereas a significant proportion of human HL can attain activity and become secreted in the absence of glucose trimming and calnexin association, these interrelated processes are nevertheless essential for the expression of full HL activity.  相似文献   

6.
We investigated how asparagine (N)-linked glycosylation affects assembly of acetylcholine receptors (AChRs) in the endoplasmic reticulum (ER). Block of N-linked glycosylation inhibited AChR assembly whereas block of glucose trimming partially blocked assembly at the late stages. Removal of each of seven glycans had a distinct effect on AChR assembly, ranging from no effect to total loss of assembly. Because the chaperone calnexin (CN) associates with N-linked glycans, we examined CN interactions with AChR subunits. CN rapidly associates with 50% or more of newly synthesized AChR subunits, but not with subunits after maturation. Block of N-linked glycosylation or trimming did not alter CN-AChR subunit associations nor did subunit mutations prevent N-linked glycosylation. Additionally, CN associations with subunits lacking N-linked glycans occurred without subunit aggregation or misfolding. Our data indicate that CN associates with AChR subunits without N-linked glycan interactions. Furthermore, CN-subunit associations only occur early in AChR assembly and have no role in events later that require N-linked glycosylation.  相似文献   

7.
The involvement of N-glycans in the folding of influenza virus hemagglutinin (HA) was analyzed in two CHO-derived glycosylation mutants exhibiting a thermosensitive defect for secretion of human placental alkaline phosphatase. Truncated Man(5)GlcNAc(2)oligosaccharides with one or three glucose residues are attached to proteins of the MadIA214 and B3F7AP2-1 mutant cells, respectively. Newly synthesized proteins retained in these cells carry a Man(4)trimmed glycan generated by a mannosidase different from the ER mannosidases I and II and suggesting a recycling through the Golgi complex. The glucosidase inhibitor castanospermine affects the binding of HA folding intermediates to the lectin-like chaperone calnexin in B3F7AP2-1 but not in MadIA214 cells. We demonstrated that calnexin interacts in vivo with truncated Man(5)derivatives. In MadIA214 cells, this is only possible when Man(5)GlcNAc(2)on protein becomes reglucosylated. The pattern of intermediates seen during the folding of HA in the MadIA214 and B3F7AP2-1 mutant cell lines is different than in control cells. We also observed a variable occupancy of the seven glycosylation-sites. However, even under conditions that restore glycosylation of all sites, the folding intermediates of HA in the mutant cells still remain heterogeneous. Our results demonstrate that addition of truncated N-glycans interferes extensively with the folding of newly synthesized proteins in vivo.  相似文献   

8.
Long QT syndrome type 2 is caused by mutations in the human ether-a-go-go-related gene (hERG). We previously reported that the N470D mutation is retained in the endoplasmic reticulum (ER) but can be rescued to the plasma membrane by hERG channel blocker E-4031. The mechanisms of ER retention and how E-4031 rescues the N470D mutant are poorly understood. In this study, we investigated the interaction of hERG channels with the ER chaperone protein calnexin. Using coimmunoprecipitation, we showed that the immature forms of both wild type hERG and N470D associated with calnexin. The association required N-linked glycosylation of hERG channels. Pulse-chase analysis revealed that N470D had a prolonged association with calnexin compared with wild type hERG and E-4031 shortened the time course of calnexin association with N470D. To test whether the prolonged association of N470D with calnexin is due to defective folding of mutant channels, we studied hERG channel folding using the trypsin digestion method. We found that N470D and the immature form of wild type hERG were more sensitive to trypsin digestion than the mature form of wild type hERG. In the presence of E-4031, N470D became more resistant to trypsin even when its ER-to-Golgi transport was blocked by brefeldin A. These results suggest that defective folding of N470D contributes to its prolonged association with calnexin and ER retention and that E-4031 may restore proper folding of the N470D channel leading to its cell surface expression.  相似文献   

9.
BackgroundThe interaction between hepatitis viruses and host cells is regulated by glycans exposed on the surfaces of human and viruses cells. As the biosynthesis and degradation of human glycoproteins take place at the highest level in the liver, the changes in glycosylation of serum proteins may potentially be useful in the diagnosis of liver pathology. On the other hand, specific alterations in viruses envelope glycans could cause large changes in the entry process of hepatitis viruses into a host cells.Scope of reviewUnique alterations in glycosylation of specific proteins can be detected in HBV and HCV infected patients especially with confirmed fibrosis/cirrhosis. On the other hand, viral envelope proteins that bind to host cells are glycosylated. These glycosylated proteins play a key role in recognition, binding and penetration of the host cells. In this review we summarized the knowledge about significance of glycosylation for viral and host factors.Major conclusionsGlycosylation changes in single serum glycoproteins are noticed in the sera of patients with viral hepatitis. However, a more specific biomarker for the diagnosis of chronic hepatitis than that of a single glycosylated molecule is systemic investigation of complete set of glycan structures (N-glycome). Glycans play important roles in the viral biology cycle especially as a connecting element with host receptors.General significanceThe interaction between virus glycoproteins and cellular receptors, which are also glycoproteins, determines the possibility of virus penetration into host cells. Therefore these glycans can be the targets for the developing of novel treatment strategies of viral hepatitis.  相似文献   

10.
Before secretion, newly synthesized thyroglobulin (Tg) folds via a series of intermediates: disulfide-linked aggregates and unfolded monomers-->folded monomers-->dimers. Immediately after synthesis, very little Tg associated with calnexin (a membrane-bound molecular chaperone in the ER), while a larger fraction bound BiP (a lumenal ER chaperone); dissociation from these chaperones showed superficially similar kinetics. Calnexin might bind selectively to carbohydrates within glycoproteins, or to hydrophobic surfaces of secretory proteins while they form proper disulfide bonds (Wada, I., W.-J. Ou, M.-C. Liu, and G. Scheele, J. Biol. Chem. 1994. 269:7464-7472). Because Tg has multiple disulfides, as well as glycans, we tested a brief exposure of live thyrocytes to dithiothreitol, which resulted in quantitative aggregation of nascent Tg, as analyzed by SDS-PAGE of cells lysed without further reduction. Cells lysed in the presence of dithiothreitol under non-denaturing conditions caused Tg aggregates to run as reduced monomers. For cells lysed either way, after in vivo reduction, Tg coprecipitated with calnexin. After washout of dithiothreitol, nascent Tg aggregates dissolved intracellularly and were secreted ultimately. 1 h after washout, > or = 92% of labeled Tg was found to dissociate from calnexin, while the fraction of labeled Tg bound to BiP rose from 0 to approximately 40%, demonstrating a "precursor-product" relationship. Whereas intralumenal reduction was essential for efficient Tg coprecipitation with calnexin, Tg glycosylation was not required. These data are among the first to demonstrate sequential chaperone function involved in conformational maturation of nascent secretory proteins within the ER.  相似文献   

11.
Bence M  Sahin-Tóth M 《The FEBS journal》2011,278(22):4338-4350
Human chymotrypsin C (CTRC) plays a protective role in the pancreas by mitigating premature trypsinogen activation through degradation. Mutations that abolish activity or secretion of CTRC increase the risk for chronic pancreatitis. The aim of the present study was to determine whether human CTRC undergoes asparagine-linked (N-linked) glycosylation and to examine the role of this modification in CTRC folding and function. We abolished potential sites of N-linked glycosylation (Asn-Xaa-Ser/Thr) in human CTRC by mutating the Asn residues to Ser individually or in combination, expressed the CTRC mutants in HEK 293T cells and determined their glycosylation state using PNGase F and endo H digestion. We found that human CTRC contains a single N-linked glycan on Asn52. Elimination of N-glycosylation by mutation of Asn52 (N52S) reduced CTRC secretion about 10-fold from HEK 293T cells but had no effect on CTRC activity or inhibitor binding. Overexpression of the N52S CTRC mutant elicited endoplasmic reticulum stress in AR42J acinar cells, indicating that N-glycosylation is required for folding of human CTRC. Despite its important role, Asn52 is poorly conserved in other mammalian CTRC orthologs, including the rat which is monoglycosylated on Asn90. Introduction of the Asn90 site in a non-glycosylated human CTRC mutant restored full glycosylation but only partially rescued the secretion defect. We conclude that N-linked glycosylation of human CTRC is required for efficient folding and secretion; however, the N-linked glycan is unimportant for enzyme activity or inhibitor binding. The position of the N-linked glycan is critical for optimal folding, and it may vary among the otherwise highly homologous mammalian CTRC sequences.  相似文献   

12.
The small (S), middle (M) and large (L) envelope proteins of the hepatitis B virus (HBV) are initially synthesized as multispanning membrane proteins of the endoplasmic reticulum membrane. We now demonstrate that all envelope proteins synthesized in transfected cells or in a cell-free system adopt more than one transmembrane orientation. The L protein disposes its N-terminal preS domain both to the cytoplasmic and the luminal side of the membrane. This unusual topology does not depend on interaction with the viral nucleocapsid, but is preserved in secreted empty envelope particles. Pulse-chase analysis suggests a novel process of post-translational translocation leading to the non-uniform topology. Analysis of L deletion mutants indicates that the block to co-translational translocation can be attributed to a specific sequence within preS, suggesting that translocation of L may be regulated. Additional topological heterogeneity is displayed in the S region of the envelope proteins and in the S protein itself, as assayed in a cell-free system. S proteins integrated into microsomal membranes exhibit both a luminal and a cytoplasmic orientation of the internal hydrophilic region carrying the major antigenic determinants. This may explain the unusual partial glycosylation of the HBV envelope proteins.  相似文献   

13.
Mutations in ABCG5 (G5) or ABCG8 (G8) cause sitosterolemia, an autosomal recessive disease characterized by sterol accumulation and premature atherosclerosis. G5 and G8 are ATP-binding cassette (ABC) half-transporters that must heterodimerize to move to the apical surface of cells. We examined the role of N-linked glycans in the formation of the G5/G8 heterodimer to gain insight into the determinants of folding and trafficking of these proteins. Site-directed mutagenesis revealed that two asparagine residues (Asn(585) and Asn(592)) are glycosylated in G5 and that G8 has a single N-linked glycan attached to Asn(619). N-Linked glycosylation of G8 was required for efficient trafficking of the G5/G8 heterodimer, but mutations that abolished glycosylation of G5 did not prevent trafficking of the heterodimer. Both G5 and G8 are bound by the lectin chaperone, calnexin, suggesting that the calnexin cycle may facilitate folding of the G5/G8 heterodimer. To determine the effects of 13 disease-causing missense mutations in G5 and G8 on formation and trafficking of the G5/G8 heterodimer, mutant forms of the half-transporters were expressed in CHO-K1 cells. All 13 mutations reduced trafficking of the G5/G8 heterodimer from the endoplasmic reticulum to the Golgi complex, and most prevented the formation of stable heterodimers between G5 and G8. We conclude that the majority of the molecular defects in G5 and G8 that cause sitosterolemia impair transport of the sterol transporter to the cell surface.  相似文献   

14.

Background

Testis-specific chaperone calmegin is required for the generation of normal spermatozoa. Calmegin is known to be a homologue of endoplasmic reticulum (ER) residing lectin chaperone calnexin. Although functional similarity between calnexin and calmegin has been predicted, detailed information concerned with substrate recognition by calmegin, such as glycan specificity, chaperone function and binding affinity, are obscure.

Methods

In this study, biochemical properties of calmegin and calnexin were compared using synthetic glycans and glycosylated or non-glycosylated proteins as substrates.

Results

Whereas their amino acid sequences are quite similar to each other, a certain difference in secondary structures was indicated by circular dichroism (CD) spectrum. While both of them inhibited protein heat-aggregation to a similar extent, calnexin exhibited a higher ability to facilitate protein folding. Similarly to calnexin, calmegin preferentially recognizes monoglucosylated glycans such as Glc1Man9GlcNAc2 (G1M9). While the surface hydrophobicity of calmegin was higher than that of calnexin, calnexin showed stronger binding to substrate. We reasoned that lectin activity, in addition to hydrophobic interaction, contributes to this strong affinity between calnexin and substrate.

Conclusions

Although their similarity in carbohydrate binding specificities is high, there seems to be some differences in the mode of substrate recognition between calmegin and calnexin.

General significance

Properties of calmegin as a lectin-chaperone were revealed in comparison with calnexin.  相似文献   

15.
The HIV-1 envelope (Env) is a key determinant in mediating viral entry and fusion to host cells and is a major target for HIV vaccine development. While Env is typically about 50% glycan by mass, glycosylation sites are known to evolve, with some glycosylation profiles presumably being more effective at facilitating neutralization escape than others. Thus, characterizing glycosylation patterns of Env and native virions and correlating glycosylation profiles with infectivity and Env immunogenicity are necessary first steps in designing effective immunogens. Herein, we describe a mass spectrometry-based strategy to determine HIV-1 Env glycosylation patterns and have compared two mammalian cell expressed recombinant Env immunogens, one a limited immunogen and one that induces cross-clade neutralizing antibodies. We have used a glycopeptide-based mass mapping approach to identify and characterize Env's glycosylation patterns by elucidating which sites are utilized and what type of glycan motif is present at each glycosylation site. Our results show that the immunogens displayed different degrees of glycosylation as well as a different characteristic set of glycan motifs. Thus, these techniques can be used to (1) define glycosylation profiles of recombinant Env proteins and Env on mature virions, (2) define specific carbohydrate moieties at each glycosylation site, and (3) determine the role of certain carbohydrates in HIV-1 infectivity and in modulation of Env immunogenicity.  相似文献   

16.
17.
The folding and assembly of nascent proteins in the endoplasmic reticulum are assisted by the molecular chaperone calnexin, which is itself retained within the endoplasmic reticulum. It was up to now assumed that calnexin was selectively expressed on the surface of immature thymocytes because of a particular characteristic of the protein sorting machinery in these cells. We now report that a small fraction of calnexin is normally expressed on the surface of various cells such as mastocytoma cells, murine splenocytes, fibroblast cells, and human HeLa cells. Surface biotinylation followed by chase culture of living cells revealed that calnexin is continuously delivered to the cell surface and then internalized for lysosomal degradation. These results suggest that there is continuous exocytosis and endocytosis of calnexin, and the amount of calnexin on the plasma membrane results from the balance of the rates of these two events. To study the structural requirement of calnexin for surface expression, we created deletion mutants of calnexin and found that the luminal domain, particularly the glycoprotein binding domain, is necessary. These findings suggest that the surface expression of calnexin depends on the association with glycoproteins and that calnexin may play a certain role as a chaperone on the plasma membrane as well.  相似文献   

18.
Prion glycoprotein: structure, dynamics, and roles for the sugars   总被引:14,自引:0,他引:14  
Rudd PM  Wormald MR  Wing DR  Prusiner SB  Dwek RA 《Biochemistry》2001,40(13):3759-3766
The prion protein contains two N-linked glycosylation sites and a glycosylphosphatidylinositol (GPI) anchor. The large size of the N-linked sugars, together with their dynamic properties, enables them to shield two orthogonal faces of the protein almost completely. Thus, the sugars can protect large regions of the protein surface from proteases and from nonspecific protein-protein interactions. Immunoprecipitation of prion protein with calnexin suggests that in the ER the oligosaccharides may provide a route for protein folding via the calnexin pathway. Major questions relate to the relevance of the glycoform distribution (as defined by glycan site occupancy) to strain type and disease transmission. Glycan analysis has shown that prion protein contains at least 52 different sugars, that these consist of a subset of brain sugars, and that there is site specific glycan processing. PrP(Sc) from the brains of Syrian hamsters contains the same set of glycans as PrP(C), but a higher proportion of tri- and tetra-antennary sugars. This may be attributed to a decrease in the activity of GnTIII. The GPI anchor, which is modified with sialic acid, may allow the prion protein to be mobile in the lipid bilayer. Potentially, this provides a possible means for translocating the prions from one cell to another.  相似文献   

19.
Chai N  Gudima S  Chang J  Taylor J 《Journal of virology》2007,81(10):4912-4918
Hepatitis B virus (HBV) replication produces three envelope proteins (L, M, and S) that have a common C terminus. L, the largest, contains a domain, pre-S1, not present on M. Similarly M contains a domain, pre-S2, not present on S. The pre-S1 region has important functions in the HBV life cycle. Thus, as an approach to studying these roles, the pre-S1 and/or pre-S2 sequences of HBV (serotype adw2, genotype A) were expressed as N-terminal fusions to the Fc domain of a rabbit immunoglobulin G chain. Such proteins, known as immunoadhesins (IA), were highly expressed following transfection of cultured cells and, when the pre-S1 region was present, >80% were secreted. The IA were myristoylated at a glycine penultimate to the N terminus, although mutation studies showed that this modification was not needed for secretion. As few as 30 amino acids from the N terminus of pre-S1 were both necessary and sufficient to drive secretion of IA. Even expression of pre-S1 plus pre-S2, in the absence of an immunoglobulin chain, led to efficient secretion. Overall, these studies demonstrate an unexpected ability of the N terminus of pre-S1 to promote protein secretion. In addition, some of these secreted IA, at nanomolar concentrations, inhibited infection of primary human hepatocytes either by hepatitis delta virus (HDV), a subviral agent that uses HBV envelope proteins, or HBV. These IA have potential to be part of antiviral therapies against chronic HDV and HBV, and may help understand the attachment and entry mechanisms used by these important human pathogens.  相似文献   

20.
With a signal trap method, we previously identified stromal interaction molecule (STIM: originally named as SIM) as a protein, which has a signal peptide in 1996. However, recent works have accumulated evidences that STIM1 and STIM2 reside in endoplasmic reticulum (ER) and that both mainly sense ER Ca(2+) depletion, which plays an essential role in store operated calcium entry. In the present study, we extensively analyzed the domain functions and associated molecules of STIMs. A STIM1 mutant lacking the coiled-coil domains was massively expressed on the cell surface while mutants with the coiled-coil domains localized in ER. In addition, STIM1 mutants with the coiled-coil domains showed a longer half-life of proteins than those without them. These results are likely to indicate that the coiled-coil domains of STIM1 are essential for its ER-retention and its stability. Furthermore, we tried to comprehensively identify STIM1-associated molecules with mass spectrometry analysis of co-immunoprecipitated proteins for STIM1. This screening clarified that both STIM1 and STIM2 have a capacity to bind to a chaperone, calnexin as well as two protein-transporters, exportin1 and transportin1. Of importance, our result that glycosylation on STIM1 was not required for the association between STIM1 and calnexin seems to indicate that calnexin might function on STIM1 beyond a chaperone protein. Further information concerning regulatory mechanisms for STIM proteins including the data shown here will provide a model of Ca(2+) control as well as a useful strategy to develop therapeutic drugs for intracellular Ca(2+)-related diseases including inflammation and allergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号