首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

3.
4.
Mitsuya S  Taniguchi M  Miyake H  Takabe T 《Planta》2005,222(6):1001-1009
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.  相似文献   

5.
Low doses of microtubule-interacting drugs cause wild-type Arabidopsis thaliana seedling roots to twist in a left-handed helical direction. We here report molecular characterization of an A. thaliana tubulin mutant whose roots twist in a right-handed direction and have shallow left-handed cortical microtubule arrays when challenged with low doses of microtubule drugs. In the absence of the drug, growth and development of the mutant was apparently normal. In this conditional twisting mutant, Cys213 of α-tubulin6 was exchanged with Tyr. The mutant tubulin was incorporated into the microtubule polymer with wild-type tubulins, and thus acted as a dominant-negative mutation. These results suggest that compromised microtubules in wild-type and mutant roots are qualitatively distinct and affect skewing direction differently.  相似文献   

6.
Carboxylesterases hydrolyze esters of short-chain fatty acids and have roles in animals ranging from signal transduction to xenobiotic detoxification. In plants, however, little is known of their roles. We have systematically mined the genome from the model plant Arabidopsis thaliana for carboxylesterase genes and studied their distribution in the genome and expression profile across a range of tissues. Twenty carboxylesterase genes (AtCXE) were identified. The AtCXE family shares conserved sequence motifs and secondary structure characteristics with carboxylesterases and other members of the larger / hydrolase fold superfamily of enzymes. Phylogenetic analysis of the AtCXE genes together with other plant carboxylesterases distinguishes seven distinct clades, with an Arabidopsis thaliana gene represented in six of the seven clades. The AtCXE genes are widely distributed across the genome (present in four of five chromosomes), with the exception of three clusters of tandemly duplicated genes. Of the interchromosomal duplication events, two have been mediated through newly identified partial chromosomal duplication events that also include other genes surrounding the AtCXE loci. Eighteen of the 20 AtCXE genes are expressed over a broad range of tissues, while the remaining 2 (unrelated) genes are expressed only in the flowers and siliques. Finally, hypotheses for the functional roles of the AtCXE family members are presented based on the phylogenetic relationships with other plant carboxylesterases of known function, their expression profile, and knowledge of likely esterase substrates found in plants.  相似文献   

7.
Somatic hybrids were produced by protoplast fusion between Arabidopsis thaliana ecotype Columbia and a male-sterile radish line MS-Gensuke (Raphanus sativus) with the Ogura cytoplasm. Forty-one shoots were differentiated from the regenerated calli and established as shoot cultures in vitro. About 20 of these shoots were judged to be hybrids based on growth characteristics and morphology. Molecular analyses of 11 shoots were performed, confirming the hybrid features. Of these 11 shoots, eight were established as rooted plants in the greenhouse. Polymerase chain reaction and randomly amplified polymorphic DNA analyses of the nuclear genomes of all analyzed shoots and plants confirmed that they contained hybrid DNA patterns. Their chromosome numbers also supported the hybrid nature of the plants. Investigations of the organelles in the hybrids revealed that the chloroplast (cp) genome was exclusively represented by radish cpDNA, while the mitochondrial DNA configuration showed a combination of both parental genomes as well as fragments unique to the hybrids. Hybrid plants that flowered were male-sterile independent of the presence of the Ogura CMS-gene orf138.Abbreviations CMS Cytoplasmic male sterilityCommunicated by M.R. Davey  相似文献   

8.
9.
Cotton fibres are single, highly elongated cells derived from the outer epidermis of ovules, and are developmentally similar to the trichomes of Arabidopsis thaliana. To identify genes involved in the molecular control of cotton fibre initiation, we isolated four putative homologues of the Arabidopsis trichome-associated gene TRANSPARENT TESTA GLABRA1 (TTG1). All four WD-repeat genes are derived from the ancestral D diploid genome of tetraploid cotton and are expressed in many tissues throughout the plant, including ovules and growing fibres. Two of the cotton genes were able to restore trichome formation in ttg1 mutant Arabidopsis plants. Both these genes also complemented the anthocyanin defect in a white-flowered Matthiola incana ttg1 mutant. These results demonstrate parallels in differentiation between trichomes in cotton and Arabidopsis, and indicate that these cotton genes may be functional homologues of AtTTG1.  相似文献   

10.
An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of the reproductive cycle.  相似文献   

11.
We isolated several mutants of Arabidopsis thaliana (L.) Heynh. that accumulated less anthocyanin in the plant tissues, but had seeds with a brown color similar to the wild-type. These mutants were allelic with the anthocyaninless1 (anl1) mutant that has been mapped at 15.0 cM of chromosome 5. We performed fine mapping of the anl1 locus and determined that ANL1 is located between the nga106 marker and a marker corresponding to the MKP11 clone. About 70 genes are located between these two markers, including three UDP-glucose:flavonoid-3-O-glucosyltransferase-like genes and a glutathione transferase gene (TT19). A mutant of one of the glucosyltransferase genes (At5g17050) was unable to complement the anl1 phenotype, showing that the ANL1 gene encodes UDP-glucose:flavonoid-3-O-glucosyltransferase. ANL1 was expressed in all tissues examined, including rosette leaves, stems, flower buds and roots. ANL1 was not regulated by TTG1.  相似文献   

12.
Simple method of Arabidopsis thaliana w.t. cv. Columbia (L.) Heynh. cultivation in liquid nutrient medium is presented. After 5 weeks of growth in soil, the plants were transferred to modified Hoagland nutrient medium. This allowed us to cultivate Arabidopsis in conditions comparable to all other hydroponically grown higher plants used in plant physiology and plant stress physiology experiments. Absence of agar in growth medium and free access to whole root system makes this method useful also in experiments concerning root physiology.  相似文献   

13.
Three AtHSP90 isoforms, cytosol-localized AtHSP90.2, chloroplast-localized AtHSP90.5, and endoplasmic reticulum (ER)-localized AtHSP90.7 genes, were constitutively overexpressed in Arabidopsis thaliana to study their functional mechanisms under oxidative stress. Overexpression of AtHSP90 genes reduced germination of transgenic seeds under oxidative stress. When exposed to 10 mM H2O2, AtHSP90 transgenic seedlings displayed lower activities of superoxide dismutase, catalase, and peroxidase; higher content of malondialdehyde; and higher levels of protein damage than detected in the wild type. This indicated that overexpression of AtHSP90.2, AtHSP90.5, and AtHSP90.7 in Arabidopsis impaired plant tolerance to oxidative stress. Moreover, overexpression of chloroplast- and ER-localized AtHSP90 resulted in lower resistance to oxidative stress than that of cytosolic AtHSP90. This suggested that HSP90.2, HSP90.5, and HSP90.7 localized in different cellular compartments were involved in different functional mechanisms during oxidative stress.  相似文献   

14.
15.
The thale cress, Arabidopsis thaliana, is considered to be an important model species in studying a suite of evolutionary processes. However, the species has been criticized on the basis of its comparatively small size at maturity (and consequent limitations in the amount of available biomass for herbivores) and on the duration and timing of its life cycle in nature. In the laboratory, we studied interactions between A. thaliana and the cabbage butterfly, Pieris rapae, in order to determine if plants are able to support the complete development of the herbivore. Plants were grown in pots from seedlings in densities of one, two, or four per pot. In each treatment, one, two, or five newly hatched larvae of P. rapae were placed on fully developed rosettes of A. thaliana. In a separate experiment, the same densities of P. rapae larvae were reared from hatching on single mature cabbage (Brassica oleracea) plants. Pupal fresh mass and survival of P. rapae declined with larval density when reared on A. thaliana but not on B. oleracea. However, irrespective of larval density and plant number, some P. rapae were always able to complete development on A. thaliana plants. A comparison of the dry mass of plants in different treatments with controls (= no larvae) revealed that A. thaliana partially compensated for plant damage when larval densities of P. rapae were low. By contrast, single cress plants with 5 larvae generally suffered extensive damage, whereas damage to B. oleracea plants was negligible. Rosettes of plants that were monitored in spring, when A. thaliana naturally grows, were not attacked by any insect herbivores, but there was often extensive damage from pulmonates (slugs and snails). Heavily damaged plants flowered less successfully than lightly damaged plants. Small numbers of generalist plant-parasitic nematodes were also recovered in roots and root soil. By contrast, plants monitored in a sewn summer plot were heavily attacked by insect herbivores, primarily flea beetles (Phyllotreta spp.). These results reveal that, in natural populations of A. thaliana, there is a strong phenological mismatch between the plant and most of its potential specialist insect herbivores (and their natural enemies). However, as the plant is clearly susceptible to attack from non-insect generalist invertebrate herbivores early in the season, these may be much more suitable for studies on direct defense strategies in A. thaliana.  相似文献   

16.
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays ADH1 5′ MAR, Nicotiana tabacum Rb7 3′ MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer–promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed between the cauliflower mosaic virus 35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::β-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated. Accession numbers: TBS from Petunia hybrida cultivar V26, GenBank accession number EU864306.  相似文献   

17.
By inserting entomological needles into the lower parts of young inflorescence stems of three-month-old Arabidopsis thaliana (L.) Heynh var. Colombia plants, we studied the process of regenerative xylem production. Regenerative xylem was formed only in one- to two-day-old inflorescence stems but not in older ones. The regenerative vessels originated from re-differentiation of cortical parenchyma. To characterize the process of regenerative xylem formation, we conducted a histological study from the time of wounding to day 30 after wounding. In the first day after wounding the tissues showed no structural responses except for the wounding itself. After six days, regenerative vessel members were already differentiating in a basipetal pattern, forming a vascular bypass around the wound. Regenerative vessel member formation reached a maximal level on the twelfth day after wounding. Sixteen days after wounding the pith parenchyma started to become loose as if indicating tissue senescence. Altogether, vascular regeneration following wounding in inflorescence stems of Arabidopsis thaliana is similar to that in other dicotyledon plants. These findings provide the basis for the use of Arabidopsis thaliana as a model system to study the genetics, physiology and cell biology of wound healing and regenerative vascular tissue formation.  相似文献   

18.
The Arabidopsis thaliana KAT1, an inward-rectifying potassium channel, shares molecular features with the Shaker family of outward rectifier K+ channels. The KAT1 amino-acid sequence reveals the presence of a positively charged S4 and a segment containing the TXGYGD signature sequence in the pore (P) region. To test whether the inward-rectifying properties of KAT1 are due to reverse orientation in the membrane, such that the voltage sensor is oriented in the opposite direction of the electric field compared with the Shaker K+ channel, we have inserted a flag epitope in the NH2 terminus or the S3–S4 loop. The KAT1 and tagged constructs expressed functional channels in whole cells, Xenopus oocytes and COS-7. The electrophysiological properties of both tagged constructs were similar to those of the wild type. Immunofluorescence with an antibody against the flag epitope and an anti-C terminal KAT1 determined the membrane localization of these epitopes and the orientation of the KAT1 channel in the membrane. Our data confirm that KAT1 in eukaryotic cells has an orientation similar to the Shaker K+ channel.  相似文献   

19.
20.
One of the rare weak points of the model plant Arabidopsis is the technical problem associated with the germination of its male gametophyte and the generation of the pollen tube in vitro. Arabidopsis pollen being tricellular has a notoriously low in vitro germination compared to species with bicellular pollen. This drawback strongly affects the reproducibility of experiments based on this cellular system. Together with the fact that pollen collection from this species is tedious, these are obstacles for the standard use of Arabidopsis pollen for experiments that require high numbers of pollen tubes and for which the percentage of germination needs to be highly reproducible. The possibility of freeze-storing pollen after bulk collection is a potential way to solve these problems, but necessitates methods that ensure continued viability and reproducible capacity to germinate. Our objective was the optimization of germination conditions for Arabidopsis pollen that had been freeze-stored. We optimized the concentrations of various media components conventionally used for in vitro pollen germination. We found that in general 4 mM calcium, 1.62 mM boric acid, 1 mM potassium, 1 mM magnesium, 18% sucrose at pH 7 and a temperature of 22.5°C are required for optimal pollen germination. However, different experimental setups may deviate in their requirements from this general protocol. We suggest how to optimally use these optimized methods for different practical experiments ranging from morphological observations of pollen tubes in optical and electron microscopy to their bulk use for molecular and biochemical analyses or for experimental setups for which a specific medium stiffness is critical. F. Bou Daher and Y. Chebli contributed equally to this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号