首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monolayers of LLC-PK1 cells, a cell line with features typical of proximal tubular epithelial cells, were treated at the apical and basolateral side with S-(1,2,3,4,4-pentachlorobutadienyl)glutathione (PCBD-GSH) and N-acetyl-S-(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine (PCBD-NAC). Apical treatment with PCBD-GSH (greater than 20 microM) resulted in cytotoxicity, which could be inhibited by acivicin and aminooxyacetic acid (AOAA), inhibitors of gamma-glutamyltranspeptidase (gamma GT) and beta-lyase respectively. In contrast apical treatment with PCBD-NAC was only toxic at high concentrations (greater than 850 microM), and this effect could hardly be inhibited by AOAA. Basolateral treatment of confluent LLC-PK1 monolayers, grown on porous membranes, with PCBD-GSH gave a much smaller response than apical treatment, consistent with the fact that gamma GT is predominantly present at the apical side. Basolateral treatment even with high concentrations of PCBD-NAC (1.1 mM) did not show an increase in cytotoxicity when compared to the effect after apical treatment. These results suggest the absence of an organic anion transporter, by which these conjugates in vivo are transported into the cells from the basolateral side. This supposition was substantiated in a study of transcellular transport of the model ions tetraethyl ammonium (TEA) and para-aminohippurate (PAH), in LLC-PK1 monolayers, grown as indicated above. No active PAH transport could be demonstrated, whereas an active TEA transport was present. The absence of an organic anion transporter limits the usefulness of LLC-PK1 cells for the study of nephrotoxicity of compounds, like PCBD-NAc, needing this transport to enter the cells. However, the finding of an active basolateral organic cation transporter, together with the presence of gamma GT, dipeptidase and beta-lyase, makes this system especially interesting for testing all compounds that use this transporter or these enzymes in order to elicit toxicity.  相似文献   

2.
We present evidence for the existence of an Na(+)-dependent transporter and an Na(+)-independent transporter for polyamines in LLC-PK1 cells. Both transporters could be discriminated by their sensitivity to inhibitors, particularly rho-chloromercuriphenyl sulphate and various polycationic molecules. By using cell monolayers grown on a permeable filter support, we have found that the Na(+)-dependent polyamine uptake occurred preferentially from the basolateral side. The Na(+)-independent uptake, on the other hand, occurred to the same extent from either the apical or the basolateral side.  相似文献   

3.
The present study examined the functional characteristics of L-DOPA transporters in two functionally different clonal subpopulations of opossum kidney (OKLC and OKHC) cells. The uptake of L-DOPA was largely Na+-independent, though in OKHC cells a minor component (approximately 15%) required extracellular Na+. At least two Na+-independent transporters appear to be involved in L-DOPA uptake. One of these transporters has a broad specificity for small and large neutral amino acids, is stimulated by acid pH and inhibited by 2-aminobicyclo(2,2,l)-heptane-2-carboxylic acid (BCH; OKLC, Ki = 291 mM; OKHC, Ki = 380 mM). The other Na+-independent transporter binds neutral and basic amino acids and also recognizes the di-amino acid cystine. [14C]-L-DOPA efflux from OKLC and OKHC cells over 12 min corresponded to a small amount of intracellular [14C]-L-DOPA. L-Leucine, nonlabelled L-DOPA, BCH and L-arginine, stimulated the efflux of [14C]-L-DOPA in a Na+-independent manner. It is suggested that L-DOPA uses at least two major transporters, systems LAT-2 and b0,+. The transport of L-DOPA by LAT-2 corresponds to a Na+-independent transporter with a broad specificity for small and large neutral amino acids, stimulated by acid pH and inhibited by BCH. The transport of L-DOPA by system b0,+ is a Na+-independent transporter for neutral and basic amino acids that also recognizes cystine. LAT-2 was found equally important at the apical and basolateral membranes, whereas system b0,+ had a predominant distribution in apical membranes.  相似文献   

4.
System L is a major nutrient transport system responsible for the Na(+)-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]L-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]L-leucine by T24 cells is Na(+)-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]L-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]L-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]L-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]L-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1.  相似文献   

5.
Summary Taurine transport was measured in cultured epithelial cells-LLC-PK1 and MDCK-grown on permeable membrane supports. Taurine transport by LLC-PK1 cells was greater on the apical surface compared to the basolateral surface. MDCK cells exhibited greater taurine uptake from the basolateral side. Transepithelial taurine flux was in the direction of apical to basolateral in the LLC-PK1 monolayers. There was no net transepithelial movement of taurine in the MDCK monolayers. Efflux of taurine from the apical and the basolateral membrane surfaces of LLC-PK1 cell monolayers was stimulated by external-alanine but not L-alanine. Efflux of taurine from MDCK cell monolayers was stimulated by-alanine on the basolateral surface. While the competitive inhibitor guainidinoeithane sulfonate (GES) competitively inhibited taurine uptake to a similar degree on the apical and basolateral surface of LLC-PK1 cell monolayers, GES had a more potent inhibitory effect on the basolateral taurine uptake in MDCK cells when compared to its inhibition of apical taurine transport. We conclude that there are characteristic differences in transport of taurine by apical and basolateral surfaces of LLC-PK1 and MDCK cells which may be the consequence of asymmetric distribution or unique structural properties of the taurine transporter.Supported by a grant from the National Institutes of Health (DK 37223), the American Heart Association (92-004470).  相似文献   

6.
Adipocytes are an important target tissue for thyroid hormone action, but little is known of the mechanisms of thyroid hormone entry into the cells. The present results show a strong interaction between transport of iodothyronines [L-thyroxine (T4), L-triiodothyronine (T3), reverse T3 (rT3)], aromatic amino acids, and the System L amino acid transport inhibitor 2-amino[2,2,1]heptane-2-carboxylic acid (BCH) in white adipocytes. System L appears to be a major pathway of iodothyronine and large neutral amino acid entry into these cells in the euthyroid state. We also demonstrate expression of the CD98hc peptide subunit of the System L transporter in adipocyte cell membranes. Experimental hypothyroidism (28-day propylthiouracil treatment) has no significant effect on System L-like transport of the amino acid tryptophan in adipocytes. In contrast, uptake of T3 and especially T4 is substantially reduced in adipocytes from hypothyroid rats, partly due to reduction of the BCH-sensitive transport component. Transport of iodothyronines and amino acids in adipocytes therefore becomes decoupled in the hypothyroid state, as occurs similarly in liver cells. This may be due to downregulation or dissociation of iodothyronine receptors from the System L transporter complex. Regulation of iodothyronine turnover in fat cells by this type of mechanism could contribute significantly to modulation of T4-T3/rT3 metabolism in the hypothyroid state.  相似文献   

7.
System L is a major nutrient transport system responsible for the Na+-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]l-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]l-leucine by T24 cells is Na+-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]l-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]l-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]l-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]l-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1.  相似文献   

8.
9.
Dietary fiber-derived short-chain fatty acids (SCFA) and phenolics produced by the gut microbiome have multiple effects on health. We have tested the hypothesis that long-term exposure to physiological concentrations of SCFA can affect the transport and metabolism of (poly)phenols by the intestinal epithelium using the Caco-2 cell model. Metabolites and conjugates of hesperetin (HT) and ferulic acid (FA), gut-derived from dietary hesperidin and chlorogenic acid, respectively, were quantified by LC-MS with authentic standards following transport across differentiated cell monolayers. Changes in metabolite levels were correlated with effects on mRNA and protein expression of key enzymes and transporters. Propionate and butyrate increased both FA transport and rate of appearance of FA glucuronide apically and basolaterally, linked to an induction of MCT1. Propionate was the only SCFA that augmented the rate of formation of basolateral FA sulfate conjugates, possibly via basolateral transporter up-regulation. In addition, propionate enhanced the formation of HT glucuronide conjugates and increased HT sulfate efflux toward the basolateral compartment. Acetate treatment amplified transepithelial transport of FA in the apical to basolateral direction, associated with lower levels of MCT1 protein expression. Metabolism and transport of both HT and FA were curtailed by the organic acid lactate owing to a reduction of UGT1A1 protein levels. Our data indicate a direct interaction between microbiota-derived metabolites of (poly)phenols and SCFA through modulation of transporters and conjugating enzymes and increase our understanding of how dietary fiber, via the microbiome, may affect and enhance uptake of bioactive molecules.  相似文献   

10.
Abstract: The nature of cysteine and cystine uptake from the cerebral capillary lumen was studied in the rat using the carotid injection technique. [35S]-Cysteine uptake was readily inhibited by the synthetic amino acid 2-amino-bicyclo(2,2,1)heptane-2-carboxylic acid (BCH), the defining substrate for the leucine-preferring (L) system in the Ehrlich ascites cell. The addition of non-radioactive alanine or serine, representatives of the alanine, serine, and cysteine-preferring (ASC) system, produced no significant decrease in the uptake of cysteine after cysteine transport by the L system was blocked with BCH. This indicated that the major component of cysteine's transport from the brain capillary lumen was by the L system with no detectable uptake of cysteine by the ASC system. No carrier-mediated transport of cystine, the disulfide form of the amino acid, was detected, nor was there any inhibition by cystine of the transport of the neutral amino acid methionine or the basic amino acid arginine. These results suggest that the ASC system, if present, is not quantitatively important for the transport of neutral amino acids from the brain capillary lumen.  相似文献   

11.
The LLC-PK1 cell line transports phosphate (Pi), glucose, and amino acids using carriers similar to those in proximal tubular cells. Others have reported that when monolayers reach confluence, hexose transport increases and activity of the A-amino acid transporter falls. The present study evaluates Pi uptake by two continuous cell lines derived from renal proximal tubule, and demonstrates that phosphate uptake falls sharply upon reaching confluence in LLC-PK1 cells but not in cultured opossum kidney (OK) cells. The fall in Pi uptake in LLC-PK1 cells at confluence represents a halving in Vmax for Na-dependent phosphate uptake (2.33 vs. 5.00 nmol/mg protein/5 min) without a change in Km (82 vs. 94 microM). Suppression of phosphate transport in confluent monolayers of LLC-PK1 cells is completely reversed by bringing the cells into suspension. As has been shown for the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA), exposure of monolayers to serum stimulates phosphate uptake, but unlike phorbol ester, serum does so without stimulating alanine uptake. OK cells differ from LLC-PK1 in that no change occurs in Pi uptake at confluence, although they resemble LLC-PK1 cells in that sugar uptake rises and alanine uptake falls at confluence. The different temporal patterns for Pi uptake in the two cell lines indicates that developmental change in the uptake of Pi is not linked to that of glucose or alanine.  相似文献   

12.
LLC-PK(1) cells grown on porous membrane filters were employed as a model system to explore the renal transport of polyamines. The polarity of LLC-PK(1) monolayers was confirmed by the exclusive appearance of a Na(+)-dependent alpha-methylglucoside transport system on the apical surface. The uptake of free polyamines from the basolateral side of monolayers was consistent with the existence of a single class of transport system, while the existence of two kinetically distinct polyamine transport systems with higher and lower affinities on apical membranes was suggested. The results of competition studies indicated that each of these transporters was able to interact with putrescine, spermidine and spermine. LLC-PK(1) cells incorporated monoacetylspermine from the apical surface of monolayers at about half the rate of spermine uptake. Monoacetylspermine inhibited spermidine uptake, indicating that free polyamine transport systems also recognized the monoacetylated derivative. In contrast, N(1),N(12)-diacetylspermine did not inhibit spermidine uptake, nor was it incorporated into the cells, indicating the absence of transport systems that recognize N(1),N(12)-diacetylspermine on the apical membranes of LLC-PK(1) cells. These results may be relevant as to our previous observation that the content of diacetylpolyamines in urine is relatively constant, and may explain the excellence of N(1),N(12)-diacetylspermine as a tumor marker.  相似文献   

13.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.  相似文献   

14.
The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor and N-methyl-d-aspartic acid receptor at endogenous brain concentrations. Recent studies have suggested that increases of brain KYNA levels are involved in psychiatric disorders such as schizophrenia and depression, and regulation of KYNA production has become a new target for treatment of these diseases. Kynurenine (KYN), the immediate precursor of KYNA, is transported into astrocytes via large neutral amino acid transporters (LATs). In the present study, the effect of LATs regulation on KYN uptake and KYNA production was investigated in vitro and in vivo using an LATs inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). In the in vitro study, cortical slices of rat brain were incubated with a physiological concentration of KYN and 3 µmol/L–3 mmol/L BCH. BCH inhibited KYNA production and KYN uptake in a dose-dependent manner, and their IC50 values were 90.7 and 97.4 µmol/L, respectively. In the in vivo study, mice were administered KYN (50 mg/kg BW) orally and BCH (200 mg/kg BW) intravenously. Administration of KYN increased brain KYN and KYNA levels compared with the mice treated with vehicle, whereas additional administration of BCH suppressed KYN-induced elevations in KYN and KYNA levels to 50 and 70 % in the brain. These results suggest that inhibition of LATs prevented the increase of KYNA production via blockade of KYN uptake in the brain in vitro and in vivo. LATs can be a target to modulate brain function by regulation of KYNA production in the brain.  相似文献   

15.
Kaur J  Bachhawat AK 《Genetics》2007,176(2):877-890
Cysteine transport in the yeast Saccharomyces cerevisiae is mediated by at least eight different permeases, none of which are specific for cysteine. We describe a novel, high-affinity, (K(m) = 55 microM), cysteine-specific transporter encoded by the ORF YLL055w that was initially identified by a combined strategy of data mining, bioinformatics, and genetic analysis. Null mutants of YLL055w, but not of the other genes encoding for transporters that mediate cysteine uptake such as GAP1, GNP1, MUP1, or AGP1 in a met15Delta background, resulted in a growth defect when cysteine, at low concentrations, was provided as the sole sulfur source. Transport experiments further revealed that Yll055wp was the major contributor to cysteine transport under these conditions. The contributions of the other transporters became relevant only at higher concentrations of cysteine or when YLL055w was either deleted or repressed. YLL055w expression was repressed by organic sulfur sources and was mediated by the Met4p-dependent sulfur regulatory network. The results reveal that YLL055w encodes the principal cysteine transporter in S. cerevisiae, which we have named YCT1 (yeast cysteine transporter). Interestingly, Yct1p belongs to the Dal5p family of transporters rather than the amino acid permease family to which all the known amino acid transporters belong.  相似文献   

16.
We have previously shown that the heterodimer CD98/LAT-2 (LAT-2: amino acid transporter) is expressed in the basolateral membrane of intestinal epithelia and is associated with beta1 integrin (Merlin, D., Sitaraman, S., Liu, X., Easterburn, K., Sun, J., Kucharzik, T., Lewis, B., and Madara, J. L. (2001) J. Biol. Chem. 276, 39282-39289). In the present study we examined the interaction of CD98/LAT2 with intracellular adhesion molecule I (ICAM-1) and the potential of such interaction on the activation of intracellular signal in Caco2-BBE cell monolayers. ICAM-1 was found to be expressed to the basolateral domain and to selectively coimmunoprecipitate with CD98/LAT-2 in Caco2-BBE monolayers. Using antibodies as ligands to CD98 and ICAM-1, we demonstrate that the basolateral cross-linking of CD98 and ICAM-1 differentially affects the intrinsic activity of the LAT-2 transporter. Whereas CD98 ligation decreases the Km and Vm of the LAT-2 transporter, ICAM-1 ligation increases Km and Vm of the amino acid transporter LAT-2. In addition, basolateral cross-linking of CD98 or ICAM-1 induces threonine phosphorylation of an approximately 160-kDa supramolecular complex that is consistent with CD98/LAT-2-ICAM-1 complex. Together these findings demonstrate that (i). CD98/LAT-2 interacts with ICAM-1 in Caco2-BBE cell monolayers, and (ii). CD98 and ICAM-1 ligands generate intracellular signals that regulate the amino acids transporter (LAT-2) activity. Our data provide a novel mechanism by which events such as adhesion may be integrated by amino acid transport activity resulting from the direct interaction of cell surface molecules such as CD98 and ICAM-1.  相似文献   

17.
IDO is the rate-limiting enzyme in the kynurenine pathway, catabolizing tryptophan to kynurenine. Tryptophan depletion by IDO-expressing tumors is a common mechanism of immune evasion inducing regulatory T cells and inhibiting effector T cells. Because mammalian cells cannot synthesize tryptophan, it remains unclear how IDO(+) tumor cells overcome the detrimental effects of local tryptophan depletion. We demonstrate that IDO(+) tumor cells express a novel amino acid transporter, which accounts for ~50% of the tryptophan uptake. The induced transporter is biochemically distinguished from the constitutively expressed tryptophan transporter System L by increased resistance to inhibitors of System L, resistance to inhibition by high concentrations of most amino acids tested, and high substrate specificity for tryptophan. Under conditions of low extracellular tryptophan, expression of this novel transporter significantly increases tryptophan entry into IDO(+) tumors relative to tryptophan uptake through the low-affinity System L alone, and further decreases tryptophan levels in the microenvironment. Targeting this additional tryptophan transporter could be a way of pharmacological inhibition of IDO-mediated tumor escape. These findings highlight the ability of IDO-expressing tumor cells to thrive in a tryptophan-depleted microenvironment by expressing a novel, highly tryptophan-specific transporter, which is resistant to inhibition by most other amino acids. The additional transporter allows tumor cells to strike the ideal balance between supply of tryptophan essential for their own proliferation and survival, and depleting the extracellular milieu of tryptophan to inhibit T cell proliferation.  相似文献   

18.
The influence of cycloleucine on kinetic parameters of uptake of L-alanine, L-proline and L-leucine into cultured human fibroblasts was examined under initial-rate conditions with substrate concentrations of 0.05-10 mM and 5 mM-cycloleucine. Kinetic data obtained by computer analysis showed that, in the absence of cycloleucine, cell uptake was heterogeneous for each amino acid. L-Alanine and L-leucine entered by two transport systems with different affinities; L-proline was taken up by one saturable transport system plus a diffusion-like process. This heterogeneity disappeared in the presence of cycloleucine, since the high-affinity systems were no longer detectable. The remaining process had the same kinetic constants as the low-affinity system for alanine and leucine and a KD similar to the diffusion constant for proline. The influence of cycloleucine on the amino acid uptake was not specific either to the amino acid concerned or to a particular transport system, since the three neutral amino acid-transport systems, A, ASC and L, were involved in these experiments. This influence was shown to be unaffected by the absence of Na+ (for leucine uptake). ATP content of the cells was identical in the presence or in the absence of cycloleucine.  相似文献   

19.
Amino acid transport was characterized in stage 6 Xenopus laevis oocytes. Most amino acids were taken up by the oocytes by way of both Na+-dependent and saturable Na+-independent processes. Na+-dependent transport of 2-aminoisobutyric acid (AIB) was insensitive to cis- or trans-inhibition by the System A-defining substrate 2-(methylamino)-isobutyric acid (MeAIB), although threonine, leucine, and histidine were found to be effective inhibitors, eliminating greater than 80% of Na+-dependent AIB uptake. Lack of inhibition by arginine eliminates possible mediation by System Bo,+ and suggests uptake by System ASC. The Na+-dependent transport of characteristic System ASC substrates such as alanine, serine, cysteine, and threonine was also insensitive to excess MeAIB. Evidence to support the presence of System Bo,+ was obtained through inhibition analysis of Na+-dependent arginine transport as well arginine inhibition of Na+-dependent threonine uptake. The Na+-independent transport of leucine was subject to trans-stimulation and was inhibited by the presence of excess phenylalanine, histidine, and, to a lesser extent, 2-amino-(2,2,1)-bicycloheptane-2-carboxylic acid (BCH). These observations are consistent with mediation by System L. The characteristics of Na+-independent uptake of threonine are not consistent with assignment to System L, and appear to be reflective of Systems asc and bo,+. In its charged state, histidine appears to be transported by a carrier similar in its specificity to System y+, but is taken up by System L when present as a zwitterion.  相似文献   

20.
This study identifies interactions between transport of the aromatic amino acid l-tryptophan (Trp) and thyroid hormones (TH) in HepG2 human hepatoma cells. The major portion of Trp uptake in HepG2 cells occurs via the NEM-sensitive amino acid transport System L2 (consistent with hepatic LAT3 expression), with a smaller aromatic-AA selective System T (MCT10) component. LAT3 and MCT10 mRNA were both detected in HepG2 cells. Uptake of TH does not involve System L2, but a significant portion of T3 uptake is mediated by System T, alongside a taurocholate-sensitive organic anion transporter. T4 uptake into HepG2 cells appears to be mediated principally by organic anion/monocarboxylate transporters, with smaller contributions by System T and receptor-mediated endocytosis. TH–Trp transport interactions in liver cells centre on System T which, due to a perivenous localisation alongside deiodinase 1, may impact on hepatic T3 generation and release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号