首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to further characterize the Sertoli cell state of differentiation, we investigated the expression of connexin 43 (cx43) protein in the testis of adult men both with normal spermatogenesis and associated with spermatogenic impairment, since cx43 is first expressed during puberty. Cx43 protein was found as a single 43-kDa band on western blots of extracts of normal human testicular material. Cx43 immunoreactivity was generally present between Leydig cells. Within the normal seminiferous epithelium cx43 immunoreactivity was localized between adjacent Sertoli cells, except at stages II and III of the seminiferous epithelial cycle when primary spermatocytes cross from the basal to the adluminal compartment suggesting a stage-dependent Sertoli cell function. While testes with hypospermatogenesis and spermatogenic arrest at the level of round spermatids or spermatocytes revealed a staining pattern similar to that of normal adult testis, the seminiferous tubules showing spermatogenic arrest at the level of spermatogonia and Sertoli-cell-only syndrome were completely immunonegative. We therefore assume that severe spermatogenic impairment is associated with a population of Sertoli cells exhibiting a stage of differentiation deficiency. Accepted: 10 June 1999  相似文献   

2.
The gap junction proteins, connexins (Cxs), are present in the testis, and among them, Cx43 play an essential role in spermatogenesis. In the present study, we investigated the testicular expression and regulation of another Cx, Cx33, previously described as a negative regulator of gap junction communication. Cx33 mRNA was present in testis and undetectable in heart, liver, ovary, and uterus. In the mature testis, Cx33 was specifically immunolocalized in the basal compartment of the seminiferous tubules, whereas Cx43 was present in both seminiferous tubule and interstitial compartments. During stages IX and X of spermatogenesis, characterized by Sertoli cell phagocytosis of residual bodies, Cx43 was poorly expressed within seminiferous tubules, while Cx33 signal was strong. To evaluate the role of phagocytosis in the control of Cx33 and Cx43 expression, the effect of LPS was analyzed in the Sertoli cell line 42GPA9. We show herein that phagocytosis activation by LPS concomitantly stimulated Cx33 and inhibited Cx43 mRNA levels. These effects appear to have been mediated through IL-1, because the exposure of Sertoli cells to the IL-1 receptor antagonist partly reversed these effects. IL-1 enhanced and reduced, respectively, the levels of Cx33 and Cx43 mRNA in a time- and dose-dependent manner. These data reveal that Cx33 and Cx43 genes are controlled differently within the testis and suggest that these two Cxs may exert opposite and complementary effects on spermatogenesis. Sertoli cell; germ cell proliferation  相似文献   

3.
Connexin 43 (Cx43) belongs to a family of proteins that form gap junction channels. The aim of this study was to examine the expression of Cx43 in the testis of a patient with Klinefelter's syndrome and of mice with the mosaic mutation and a partial deletion in the long arm of the Y chromosome. These genetic disorders are characterized by the presence of numerous degenerated seminiferous tubules and impaired spermatogenesis. In mouse testes, the expression and presence of Cx43 were detected by means of immunohistochemistry and Western blot analysis, respectively. In testes of Klinefelter's patient only immunoexpression of Cx43 was detected. Regardless of the species Cx43 protein was ubiquitously distributed in testes of reproductively normal males, whereas in those with testicular disorders either a weak intensity of staining or no staining within the seminiferous tubules was observed. Moderate to strong or very strong staining was confined to the interstitial tissue. In an immunoblot analysis of testicular homogenates Cx43 appeared as one major band of approximately 43 kDa. Our study adds three more examples of pathological gonads in which the absence or apparent decrease of Cx43 expression within the seminiferous tubules was found. A positive correlation between severe spermatogenic impairment and loss of Cx43 immunoreactivity observed in this study supports previous data that gap junctions play a crucial role in spermatogenesis. Strong Cx43 expression detected mostly in the interstitial tissue of the Klinefelter's patient may presumably be of importance in sustaining Leydig cell metabolic activity. However, the role of gap junction communication in the control of Leydig cell function seems to be more complex than originally thought.  相似文献   

4.
In human testis, gap junctions containing connexin(Cx)43 are located within the seminiferous epithelium between Sertoli cells and between Sertoli and germ cells. Cx43 is known to play a role in the differentiation and proliferation of these cell types. It can further be associated with human seminoma development. The dog has been proposed as a model for studies of the male reproductive system, because of the frequent occurrence of testicular neoplasms. Thus, we investigated Cx43-mRNA and -protein expression in testes of normal prepubertal dogs, adult dogs, and in canine testicular tumors. Sertoli cells in prepubertal cords express Cx43 mRNA, but do synthesize only less Cx43 protein. Within the seminiferous tubules, Cx43 mRNA was detected in Sertoli cells, spermatogonia, and spermatocytes. Cx43 protein was mainly present in the basal compartment. In canine testicular tumors Cx43 mRNA was detectable in both seminoma and neoplastic Sertoli cells, whereas Cx43 protein was only found in neoplastic Sertoli cells. Our data indicate that Cx43 is regulated differentially in testicular tumors and that alterations of Cx43 expression may be involved in the pathogenesis of canine testicular malignancies. This study represents the first morphological work on the spatiotemporal expression pattern of Cx43 in normal and neoplastic canine testis.  相似文献   

5.
Mammalian male fertility relies on complex inter- and intracellular signaling during spermatogenesis. Here we describe three alleles of the widely expressed A-kinase anchoring protein 9 (Akap9) gene, all of which cause gametogenic failure and infertility in the absence of marked somatic phenotypes. Akap9 disruption does not affect spindle nucleation or progression of prophase I of meiosis but does inhibit maturation of Sertoli cells, which continue to express the immaturity markers anti-Mullerian hormone and thyroid hormone receptor alpha in adults and fail to express the maturation marker p27Kip1. Furthermore, gap and tight junctions essential for blood–testis barrier (BTB) organization are disrupted. Connexin43 (Cx43) and zona occludens-1 are improperly localized in Akap9 mutant testes, and Cx43 fails to compartmentalize germ cells near the BTB. These results identify and support a novel reproductive tissue-specific role for Akap9 in the coordinated regulation of Sertoli cells in the testis.  相似文献   

6.
7.
In mice, glial cell line-derived neurotrophic factor (GDNF) is essential for normal spermatogenesis and in vitro culture of spermatogonial stem cells. In murine testes, GDNF acts as paracrine factor; Sertoli cells secrete it to a subset of spermatogonial cells expressing its receptor, GDNF family receptor α1 (GFRα1). However, in fish, it is unclear what types of cells express gdnf and gfrα1. In this study, we isolated the rainbow trout orthologues of these genes and analyzed their expression patterns during spermatogenesis. In rainbow trout testes, gdnf and gfrα1 were expressed in almost all type A spermatogonia (ASG). Noticeably, unlike in mice, the expression of gdnf was not observed in Sertoli cells in rainbow trout. During spermatogenesis, the expression levels of these genes changed synchronously; gdnf and gfrα1 showed high expression in ASG and decreased dramatically in subsequent developmental stages. These results suggested that GDNF most likely acts as an autocrine factor in rainbow trout testes.  相似文献   

8.
9.
Failure of spermatogenesis in mice lacking connexin43   总被引:8,自引:0,他引:8  
Connexin43 (Cx43), a gap junction protein encoded by the Gja1 gene, is expressed in several cell types of the testis. Cx43 gap junctions couple Sertoli cells with each other, Leydig cells with each other, and spermatogonia/spermatocytes with Sertoli cells. To investigate the role of this communication pathway in spermatogenesis, we studied postnatal testis development in mice lacking Cx43. Because such mice die shortly after birth, it was necessary to graft testes from null mutant fetuses under the kidney capsules of adult males for up to 3 wk. Grafted wild-type testes were used as controls. In our initial experiments with wild-type testes, histological examination indicated that the development of grafted testes kept pace with that of nongrafted testes in terms of the onset of meiosis, but this development required the presence of the host gonads. When excised grafts were stimulated in vitro with cAMP or LH, there was no significant difference in androgen production between null mutant and wild-type testes, indicating that the absence of Cx43 had not compromised steroidogenesis. Previous research has shown that Cx43 null mutant neonates have a germ cell deficiency that arises during fetal life, and our analysis of grafted testes demonstrated that this deficiency persists postnatally, giving rise to a "Sertoli cell only" phenotype. These results indicate that intercellular communication via Cx43 channels is required for postnatal expansion of the male germ line.  相似文献   

10.
11.
The cell-to-cell channels in gap junctions, formed of proteins called connexins (Cxs), provide a direct intercellular pathway for the passage of small signaling molecules (< or = 1 kD) between the cytoplasmic interiors of adjoining cells. It has been proposed that alteration in the expression and function of Cxs may be one of the genetic changes involved in the initiation of neoplasia. To elucidate the role of Cxs in the pathogenesis of human prostate cancer (PCA), the pattern of expression of Cx alpha 1 (Cx43) and Cx beta 1 (Cx32) was studied by immunocytochemical analysis in normal prostate and in prostate tumors of different histological grades. While normal prostate epithelial cells expressed only Cx beta 1, both Cx alpha 1 and Cx beta 1 were detected in PCA cells. The Cxs were localized at the cell-cell contact areas in normal prostate and well-differentiated prostate tumors; however, as prostate tumors progressed to more undifferentiated stages, the Cxs were localized in the cytoplasm, followed by an eventual loss in advanced stages. Thus, epithelial cells from prostate tumors showed subtle and gross alterations with regard to expression of Cx alpha 1 and Cx beta 1 and their assembly into gap junctions during the progression of PCA. Retroviral-mediated transfer of Cx alpha 1 and Cx beta 1 into a Cx-deficient human PCA cell line, LNCaP, inhibited growth, retarded tumorigenicity, and induced differentiation, and these effects were contingent upon the formation of gap junctions. In addition, the capacity to form gap junctions in most Cx-transduced LNCaP cells was lost upon serial passage. Taken together, these findings indicate that the control of proliferation and differentiation of epithelial cells in prostate tumors may depend on the appropriate assembly of Cx beta 1 and Cx alpha 1 into gap junctions and that the development of PCA may involve the positive selection of cells with an impaired ability to form gap junctions.  相似文献   

12.
We examined the localization of steroidogenic cells in rainbow trout (Oncorhynchus mykiss) testis during spermatogenesis by using polyclonal antibodies generated against rainbow trout cholesterol side-chain cleavage enzyme cytochrome P450 (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), 17α-hydroxylase/C17,21 lyase (P450c17), and aromatase cytochrome P450 (P450arom) as markers of steroid production. Since we had previously produced specific antibodies against 3β-HSD and P450arom, antibodies against oligopeptides corresponding to C-terminal sequences of P450scc and P450c17, predicted from rainbow trout P450scc and P450c17 cDNAs, were produced in this study. These two antibodies recognized 54-kDa (P450scc) and 59-kDa (P450c17) bands specifically in several steroidogenic organs, i.e., testis, ovary, and interrenal tissue (head kidney) in Western blots. Immunohistochemically, immunoreactive P450scc, P450c17, and 3β-HSD, but not P450arom, were found only in interstitial Leydig cells of immature and mature testes. Immunoreactive P450arom was not detected in either testis. This study suggests that Sertoli cells and germ cells of rainbow trout testis do not contain P450scc, P450c17, P450arom, or 3β-HSD.  相似文献   

13.
Sertoli cells are essential in development of a functional testis. During puberty, Sertoli cell maturation can be characterized by a number of markers, including anti-Müllerian hormone (AMH) and its receptor (AMHR2), androgen receptor (AR), cyclin-dependent kinase inhibitor (CDKN1B), and connexin 43 (Cx43). In the present study, immunohistochemistry (IHC) and real-time quantitative polymerase chain reaction (RT-qPCR) were used to characterize changes in expression of AMH, AMHR2, AR, CDKN1B, and Cx43 in prepubertal, postpubertal, and adult equine testes. During puberty, AMH expression decreased, and expression of AR as well as CDKN1B increased in Sertoli cells coinciding with the period of Sertoli cell maturation, arrest of cell proliferation, and presumptive AMH regulation by testosterone. Expression of AMHR2 appeared to decrease in Sertoli cells and increase in Leydig cells during pubertal maturation of the equine testis. In addition, expression and distribution of Cx43 changed during puberty in the stallion, suggesting a role for Cx43 in Sertoli cell signaling and maturation, hormone secretion, and blood-testis barrier formation. We concluded that Sertoli cell maturation during puberty in the stallion was accompanied by a reduced expression of AMH and its receptor, arrest of cell proliferation, increased expression of AR, and organization of gap-junctional communication.  相似文献   

14.
Connexin 43 (Cx 43)—expressed by germ cells (GC), Sertoli cells (SC) and Leydig cells—is one of at least eleven Cx in the murine testis. A general knockout (KO) of Cx 43 in mice results in perinatal death and a SC-specific KO of Cx 43 (SCCx43KO) causes infertility of male mice by preventing the initiation of spermatogenesis. To further elucidate the role of Cx 43 in the testis, a new mouse model with a GC-specific KO of Cx 43 (GCCx43KO) was created by using the Cre/loxP recombination system. A transgenic mouse line expressing the Cre gene under the tissue non-specific alkaline phosphatase promoter and a transgenic floxed Cx 43-LacZ mouse line were mated. The resulting F1-generation was backcrossed with homozygous Cx 43 floxed mice, and offspring was genotyped. Immunohistochemical analysis of testes of different aged homozygous mice revealed normal spermatogenesis and reduced Cx 43 immunoreactions. RT-qPCR and Western blots showed a downregulation of Cx 43 mRNA and protein, and a nearly unchanged mRNA expression of Cx 26, Cx 33 and Cx 45 in pubertal and adult KO mice. Western blots revealed considerable immunoreactive bands for Cx 26 and Cx 45. Male and female homozygous GCCx43KO mice were viable and fertile. Our data suggest, in contrast to inter SC and inter SC–GC cross talk in SCCx43KO mice which depends selectively on Cx 43 expression, that Cx 43 in GC seems not to be essential in GC–SC communication, when other Cx persist to be expressed.  相似文献   

15.
16.
Non seminomatous testicular germ cell tumors (NSTGCTs) express fetal stem cell markers and display dysregulation of connexin 43 expression. Persistence of fetal spermatogonial characteristics was implicated in the emergence of testicular germ cell tumors. The objective of this study was to analyze the tubular architecture in contralateral testes of patients with NSTGCT. We studied morphologic alterations, expression patterns of markers for the integrity of the germinal epithelium (gap junction proteins connexin 43 and 26), as well as of the embryonic markers c-KIT and placental alkaline phosphatase (PlAP), both established markers to detect carcinoma in situ (CIS). In all samples, tubules showing maturation of germ cells up to spermatozoa were observed. In addition, tubules with alterations in tubular architecture and with impaired spermatogenesis occurred. In tubules showing aberrant spermatogenesis, connexin 43 (Cx43) signal was down-regulated and a shift of signal from gap junctions to the cytoplasm occurred. Concomitantly, Cx26 was found highly up-regulated in tubules with incomplete and aberrant germ cell maturation. All testes exhibited single spermatogonia with positive reaction for c-KIT and a significant positive correlation was found between the mean number of c-KIT positive spermatogonia per tubule and the percentage of tubules presenting severely impaired spermatogenesis. Our data show alterations of the normal architecture of the germinal epithelium and disturbances of spermatogenesis in the contralateral testes of patients with NSTGCT in all cases evaluated. The concomitant occurrence of c-KIT positive spermatogonia and defects in tubular architecture is in line with the hypothesis that patients with NSTGCT suffer from disturbed germ cell development.  相似文献   

17.
Estrogen receptor-alpha (ER-alpha) is important for male reproduction in mammals; however, no information is available on ER-alpha protein distribution in the testes of fishes. The cellular localization of the rainbow trout (Oncorhynchus mykiss) ER-alpha (rtER-alpha) protein, throughout the annual reproductive cycle was determined in this study. An antibody was designed based on a 15-amino acid sequence from the D-domain of the rtER-alpha, and its specificity was confirmed using Western blot analysis. Immunohistochemical analysis revealed rtER-alpha protein to be present only in the testicular interstitium, at every stage of the annual reproductive cycle. The localization of rtER-alpha protein in the interstitial fibroblasts, the Leydig cell precursor in the rainbow trout, suggests a role for estrogens in the differentiation of these precursor cells into mature Leydig cells. This is the first study to report the cellular localization of an estrogen receptor protein in the testis of any fish species.  相似文献   

18.
19.
Follicle-stimulating hormone (FSH) and triiodothyronine (T3) are known regulatory factors of spermatogenesis initiation. Connexin 43 (Cx43) is the most ubiquitous constitutive protein of gap junctions in the testis. This study evaluates the effects of the hyperstimulation of FSH and T3 during testicular maturation on Cx43 expression in the testis. The newborn, male Wistar rats were divided randomly into four experimental groups: FSH group-daily injections of FSH 7.5?IU/animal; T3 group-100?μg T3/kg body weight; FSH+T3 group-both substances; A control group-received vehicles in the same volume. Proliferating cell nuclear antigen immunohistochemistry and toluidine blue staining were used to determine the germ cell proliferation and degeneration. Cx43 immunolocalization was evaluated to find Cx43 maturational changes. Under FSH treatment, the proliferation rate was high so the total number of Sertoli cells increased with a low level of degeneration and lumen formation. T3 stimulation evoked a reduction in the proliferation rate and a decrease in Sertoli cell number but with intensive formation of lumen. T3+FSH inhibited the proliferation rate and stimulated lumen formation together with degeneration, which negatively influenced the number of germ cells in the seminiferous epithelium. We conclude that T3 action seems to be particularly connected with the maturation of Cx43 gap junctions. FSH stimulates maturation of Sertoli cell function, but this effect may take place regardless of the presence of Cx43-dependent intercellular communication. The hyperstimulation of both FSH and T3 damages Cx43 connections and hence evokes regressional changes in the seminiferous epithelium.  相似文献   

20.
INTRODUCTION: Evidence collected over the years has demonstrated that cryptorchidism is associated with a defect in spermatogenesis and, as a consequence, with either reduced fertility or infertility. However, the effect of cryptorchidism on Leydig cell function is less clear. The aim of our study therefore was to investigate the regulation of steroid hormone biosynthesis and, additionally, intercellular communication in the cryptorchid equine testes. MATERIAL AND METHODS: Testes of mature bilaterally cryptorchid horse and healthy stallions were used for this study. The expression of luteinising hormone receptor (LHR), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), aromatase and connexin43 (Cx43) was detected by means of immunohistochemistry. Testosterone and oestradiol levels were measured in testicular homogenates using appropriate radioimmunoassays. RESULTS: In the testes of both normal and cryptorchid stallions, immunostaining for LHR, 3beta-HSD and aromatase was confined to the Leydig cells. In the cryptorchid horse, the intensity of the staining for LHR and 3beta-HSD was weaker, whereas the staining for aromatase was clearly stronger than that of the normal stallion. Radioimmunological analysis revealed disturbance of the androgen-oestrogen balance in the cryptorchid testes. Additionally, in both the seminiferous tubules and interstitial tissue of the cryptorchid a clear reduction of the Cx43 signal was observed. CONCLUSIONS: Decreased expression of LHR and 3beta-HSD and increased expression of aromatase in the cryptorchid testes suggest that hormonal imbalance was caused both by reduced testosterone synthesis and by increased androgen aromatisation. Impaired expression of Cx43 in the seminiferous tubules as well as in the interstitial tissue of the cryptorchid horse indicates that cryptorchidism affects intercellular communication in the testes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号