首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some strains of Klebsiella pneumonia secrete pullulanase, a debranching enzyme which produces linear molecules (maltodextrins, amylose) from amylopectin and glycogen. pulA, the structural gene for pullulanase, was introduced into Escherichia coli, either on a multiple-copy-number plasmid or as a single copy in the chromosome. When in E. coli, pulA was controlled by malT, the positive regulatory gene of the maltose regulon. Indeed, pulA expression was undetectable in a malT-negative mutant and constitutive in a malTc strain. Furthermore, the plasmid carrying pulA titrated the MalT protein. When produced in E. coli, pullulanase was not localized in the same way as in K. pneumoniae. In the latter case it was first exported to the outer membrane, with which it remained loosely associated, and was then released into the growth medium. In E. coli the enzyme was distributed both in the inner and the outer membranes and was never released into the growth medium.  相似文献   

2.
Hybrid proteins were constructed in which C-terminal regions of the bacterial cell surface and extracellular protein pullulanase were replaced by the mature forms of the normally periplasmic Escherichia coli proteins beta-lactamase or alkaline phosphatase. In E. coli strains expressing all pullulanase secretion genes, pullulanase-beta-lactamase hybrid protein molecules containing an N-terminal 834-amino-acid pullulanase segment were efficiently and completely transported to the cell surface. This hybrid protein remained temporarily anchored to the cell surface, presumably via fatty acids attached to the N-terminal cysteine of the pullulanase segment, and was subsequently specifically released into the medium in a manner indistinguishable from that of pullulanase itself. These results suggest that the C-terminal extremity of pullulanase lacks signal(s) required for export to the cell surface. When beta-lactamase was replaced by alkaline phosphatase, the resulting hybrid also became exposed at the cell surface, but exposition was less efficient and specific release into the medium was not observed. We conclude that proteins that do not normally cross the outer membrane can be induced to do so when fused to a permissive site near the C-terminus of pullulanase.  相似文献   

3.
We constructed, by site-directed mutagenesis, a mutant pullulanase gene in which the cysteine residue in a pentapeptide sequence, Leu16-Leu-Ser-Gly-Cys20 within the NH2-terminal region of pullulanase from Klebsiella aerogenes, is replaced by serine (Ser20). The modification, processing, and subcellular localization of the mutant pullulanase were studied. Labeling studies with [3H]palmitate and immunoprecipitation with mouse antiserum raised against pullulanase showed that the wild form of both the extracellular and intracellular pullulanases contained lipids, whereas the mutant enzyme was not modified with lipids. Only the Cys20 was modified with glyceryl lipids. The bulk of the mutant pullulanase was located in the periplasm, but a portion of the unmodified, mutant pullulanase was secreted into the medium. Mutant pullulanases from the extracellular and the periplasm were purified and their NH2-terminal sequences were determined. Both the mutant pullulanases were cleaved between residues of Ser13 and Leu14 which is 6-amino acid residues upstream of the lipid modified pullulanase cleavage site. This new cleavage was resistant to globomycin, an inhibitor of the prolipoprotein signal peptidase of Escherichia coli. These results indicate that the pentapeptide sequence plays an important role in maturation and translocation of pullulanase in K. aerogenes. However, the modification of pullulanase with lipids seems to be not essential for export of the enzyme across the outer membrane.  相似文献   

4.
Export and secretion of the lipoprotein pullulanase by Klebsiella pneumoniae   总被引:18,自引:8,他引:10  
Pullulanase, a secreted lipoprotein of Klebsiella pneumoniae, is initially localized to the outer face of the outer membrane, as shown by protease and substrate accessibility and by immunofluorescence tests. Freeze-thaw disruption of these cells released both membrane-associated and apparently soluble forms of pullulanase. Membrane-associated pullulanase co-fractionated with authentic outer membrane vesicles upon isopycnic sucrose-gradient centrifugation, whereas the quasi-soluble form had the same equilibrium density as inner membrane vesicles and extracellular pullulanase aggregates. The latter also contained outer membrane maltoporin, but were largely devoid of other membrane components including LPS and lipids. K. pneumoniae carrying multiple copies of the pullulanase structural gene (pulA) produced increased amounts of cell-associated and secreted pullulanase, but a large proportion of the enzyme was neither exposed on the cell surface nor released into the medium, even after prolonged incubation. This suggests that factors necessary for pullulanase secretion were saturated by the over-produced pullulanase. When pulA was expressed under lacZ promotor control, the pullulanase which was produced was not exposed on the cell surface at any time, suggesting that pullulanase secretion genes are not expressed constitutively, and raising the possibility that they, like pulA, may be part of the maltose regulon.  相似文献   

5.
C3 ADP-ribosyltransferase is an exoenzyme produced by certain strains of Clostridium botulinum types C and D, which specifically ADP-ribosylates rho and rac proteins in eukaryotic cells. The enzyme was purified from a culture filtrate of C. botulinum type C strain 003-9, and the amino acid sequence from the amino-terminal Ser to Asn192 was determined by Edman degradation. Using a set of degenerate primers based on the sequence, we amplified a part of the gene for this enzyme by polymerase chain reaction. A 2.1-kilobase pair HincII fragment of C. botulinum DNA containing the whole structural gene was then identified by Southern analysis with the polymerase chain reaction product as a probe, and the complete nucleotide structure of the gene together with flanking regions was determined by cloning and DNA sequencing the HincII fragment. The gene encodes a protein of 244 amino acids with a Mr of 27,362 which begins with a putative signal peptide of 40 amino acids. Escherichia coli carrying this gene produced the active enzyme, and about 60% of it was found in the culture medium. Immunoblot analysis with antiserum against the enzyme revealed the presence of two immunoreactive proteins of 27 and 23 kDa in the cytoplasmic/membrane fraction and only the 23-kDa protein in the periplasm and the medium, suggesting that the enzyme expressed is processed in the E. coli, exported into the periplasm and released into the culture medium.  相似文献   

6.
Pullulanase is an extracellular, cell surface-anchored lipoprotein produced by Gram-negative bacteria belonging to the genus Klebsiella. Its correct localization in recombinant Escherichia coli requires the products of 14 genes that are linked to the enzyme structural gene in the Klebsiella chromosome. In addition, we show here that six sec genes (secA, secB, secD, secE, secF and secY) are all required for processing of the prepullulanase signal peptide to occur. This implies that pullulanase crosses the cytoplasmic membrane via the general export pathway of which the sec gene products are essential components. Removal or drastic alteration of the prepullulanase signal peptide cause the enzyme to remain cytoplasmic. We propose that pullulanase secretion occurs in two steps, the first of which is common to all signal peptide-bearing precursors of exported and secreted proteins, whereas the second is specifically involved in translocating pullulanase to the cell surface.  相似文献   

7.
The gene (iam) coding for isoamylase (glycogen 6-glucanohydrolase) of Pseudomonas amyloderamosa SB-15 was cloned. Its nucleotide sequence contained an open reading frame of 2313 nucleotides (771 amino acids) encoding a precursor of secreted isoamylase. The precursor contained a signal peptide of 26 amino acid residues at its amino terminus and three regions homologous with those conserved in alpha-amylases (1,4-alpha-D-glucan 4-glucanohydrolase) of species ranging from prokaryotes to eukaryotes. These homologous regions were also found in another debranching enzyme, pullulanase (pullulan 6-glucanohydrolase) from Klebsiella aerogenes. Sequences of the isoamylase also showed significant homology with those between positions 300 and the carboxyl terminus of pullulanase. The regions required for the specificity of isoamylase were discussed on the basis of a comparison of its amino acid sequence with those of alpha-amylases, cyclomaltodextrin glucanotransferases, and pullulanase.  相似文献   

8.
Three different techniques, protease accessibility, cell fractionation and in situ immunocytochemistry, were used to study the location of the lipoprotein pullulanase produced by Escherichia coli K12 carrying the cloned pullulanase structural gene (pulA) from Klebsiella pneumoniae, with or without the K. pneumoniae genes required to transport pullulanase to the cell surface (secretion-competent and secretion-incompetent, respectively). Pullulanase produced by secretion-competent strains could be slowly but quantitatively released into the medium by growing the cells in medium containing pronase. The released pullulanase lacked the N-terminal fatty-acylated cysteine residue (and probably also a short N-terminal segment of the pullulanase polypeptide), confirming that the N-terminus is the sole membrane anchor in the protein. Pullulanase produced by secretion-incompetent strains was not affected by proteases, confirming that it is not exposed on the cell surface. Pullulanase cofractionated with both outer and inner membrane vesicles upon isopycnic sucrose gradient centrifugation, irrespective of the secretion competence of the strain. Examination by electronmicroscopy of vesicles labelled with antipullulanase serum and protein A-gold confirmed that pullulanase was associated with both types of vesicles. When thin-sectioned cells were examined by the same technique, pullulanase was found to be located mainly on the cell surface of the secretion-competent cells and mainly in the proximity of the inner membrane in the secretion-incompetent cells. Thus, while the results from three independent techniques (substrate accessibility, protease accessibility and in situ immunocytochemistry) show that pullulanase is transported to the cell surface of secretion-competent cells, this could not be confirmed by cell-fractionation techniques. Possible explanations for this discrepancy are discussed.  相似文献   

9.
Site-directed mutagenesis was used to construct three mutant derivatives of the extracellular, cell surface lipoprotein pullulanase (PulA) in which the normally fatty acylated cysteine of the signal peptide-bearing precursor was replaced by other amino acids. When produced in Escherichia coli expressing all genes required for pullulanase secretion, approximately 90% of the PulA derivatives persisted as cell-associated precursors, indicating inefficient signal peptide processing. Processed (intermediate-sized) forms of the two derivatives that were studied in detail were found to result from proteolytic cleavage at different sites within the signal peptide. Both were further processed to smaller polypeptides by cleavage at an undetermined site that is presumably close to their C termini. The intermediate-sized pullulanase derived from prepullulanase in which Cys+1 had been replaced by Leu and Gly-1 by Glu (PulA:C1L/G-1E) appeared rapidly, was apparently entirely extracellular, and accounted for approximately 10% of synthesized PulA. Prolonged incubation did not result in further conversion of the precursor to the intermediate form, and the precursor remained anchored to the cytoplasmic membrane. The smaller processed form was also found extracellularly. The active form of the extracellular enzyme was monomeric, which is again in contrast to the fatty acylated, wild-type enzyme. Taken together, these results indicate that replacement of Cys+1 of prePulA eliminates processing by lipoprotein signal peptidase and does not permit processing by leader peptidase, but allows inefficient, aberrant processing by an unknown peptidase and immediate secretion of the resulting polypeptide, which retains most of its signal peptide. Processing and secretion only occur when the pullulanase secretion functions are expressed.  相似文献   

10.
Excretion of the egl gene product of Pseudomonas solanacearum.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

11.
Linker insertions in the pullulanase structural gene (pulA) were examined for their effects on pullulanase activity and cell surface localization in Escherichia coli carrying the cognate secretion genes from Klebsiella oxytoca. Of the 23 insertions, 11 abolished pullulanase activity but none were found to prevent secretion. To see whether more drastic changes affected secretion, we fused up to five reporter proteins (E. coli periplasmic alkaline phosphatase, E. coli periplasmic maltose-binding protein, periplasmic TEM beta-lactamase, Erwinia chrysanthemi extracellular endoglucanase Z, and Bacillus subtilis extracellular levansucrase) to three different positions in the pullulanase polypeptide: close to the N terminus of the mature protein, at the C terminus of the protein, or at the C terminus of a truncated pullulanase variant lacking the last 256 amino acids. Only 3 of the 13 different hybrids were efficiently secreted: 2 in which beta-lactamase was fused to the C terminus of full-length or truncated pullulanase and 1 in which maltose-binding protein was fused close to the N terminus of pullulanase. Affinity-purified endoglucanase-pullulanase and pullulanase-endoglucanase hybrids exhibited apparently normal levels of pullulanase activity, indicating that the conformation of the pullulanase segment of the hybrid had not been dramatically altered by the presence of the reporter. However, pullulanase-endoglucanase hybrids were secreted efficiently if the endoglucanase component comprised only the 60-amino-acid, C-terminal cellulose-binding domain, suggesting that at least one factor limiting hybrid protein secretion might be the size of the reporter.  相似文献   

12.
Extracellular and protease-released pullulanases.   总被引:2,自引:2,他引:0       下载免费PDF全文
The extracellular form of pullulanase (EC 3.2.1.41) from Klebsiella aerogenes has been purified to homogeneity by successive chromatography through diethylaminoethyl-cellulose, Sephadex G-200, and 1,6-diaminohexane-Sepharose. In addition, the cell-bound form of pullulanase has been released by the action of a serine endopeptidase obtained from Pronase and purified to apparent homogeneity. Protease-released pullulanase has a slightly larger molecular weight and a specific activity over twice that of the extracellular protein. The properties of each of these forms of pullulanase have been compared with those reported for the detergent-released form. Each form has different features as examined by amino acid composition, specific activity, molecular weight, or inhibition pattern, which distinguish it from the other pullulanases. It is hypothesized that a single gene product consisting of a single polypeptide chain generates these different enzyme forms after selective cleavages by endogenous or applied proteases.  相似文献   

13.
The cell surface proteoglycan of mouse mammary epithelial (NMuMG) cells behaves as a receptor for interstitial matrix materials and consists of a membrane-associated domain and an extracellular domain (ectodomain). The ectodomain can be released intact from the cell surface by mild trypsin treatment and appears to be shed from the cells into the culture medium by cleavage from the membrane-associated domain. We have examined the chemical relationship between the trypsin-released proteoglycan and shed proteoglycan to assess their relationship to each other and to the cell surface. Purification and amino acid sequencing of the ectodomain released by mild trypsin treatment resulted in no clear signal until the protein was cleaved by CNBr treatment, suggesting that its N terminus is blocked and oriented extracellularly. The amino acid sequence identified in the trypsin-released ectodomain is present near the N terminus of the shed proteoglycan purified from conditioned medium, indicating that both forms possess closely related (if not identical) core proteins. The sequence reveals a pentapeptide identical to one near the C terminus of the rat hepatic lectin (RHL-1, rat asialoglycoprotein receptor). The medium proteoglycan, which migrates as a smear on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (between 93 and 200 kDa), is heterogeneous due to varying amounts of glycosaminoglycan and substituted O-linked oligosaccharide present on an approximately 46-kDa polypeptide.  相似文献   

14.
A DNA fragment of Serratia marcescens directing an extracellular serine protease (Mr, 41,000) was cloned in Escherichia coli. The cloned fragment caused specific excretion of the protease into the extracellular medium through the outer membrane of E. coli host cells in parallel with their growth. No excretion of the periplasmic enzymes of host cells occurred. The cloned fragment contained a single open reading frame of 3,135 base pairs coding a protein of 1,045 amino acids (Mr 112,000). Comparison of the 5' nucleotide sequence with the N-terminal amino acid sequence of the protease indicated the presence of a typical signal sequence. The C-terminal amino acid of the enzyme was found at position 408, as deduced from the nucleotide sequence. Artificial frameshift mutations introduced into the coding sequence for the assumed distal polypeptide after the C terminus of the protease caused complete loss of the enzyme production. It was concluded that the Serratia serine protease is produced as a 112-kilodalton proenzyme and that its N-terminal signal peptide and a large C-terminal part are processed to cause excretion of the mature protease through the outer membrane of E. coli cells.  相似文献   

15.
The Serratia marcescens serine protease (SSP) is one of the extracellular enzymes secreted from this Gram-negative bacterium. When the ssp gene, which encodes a SSP precursor (preproSSP) composed of a typical NH2-terminal signal peptide, a mature enzyme domain, and a large COOH-terminal pro-region, is expressed in Escherichia coli, the mature protease is excreted through the outer membrane into the medium. The COOH-terminal pro-region, which is integrated into the outer membrane, provides the essential function for the export of the mature protein across the outer membrane. This is a very simple pathway, in contrast to the general secretory pathway exemplified by the secretion of a pullulanase from Klebsiella oxytoca, in which many separately encoded accessory proteins are required for the transport through the outer membrane. Moreover, the NH2-terminal region of 71 amino acid residues of the COOH-terminal pro-sequence plays an essential role, as an “intramolecular chaperone,” in the folding of the mature enzyme in the medium. In addition to ssp, the S. marcescens strain contains two ssp homologues encoding proteins similar to SSP in amino acid sequence and size, but with no protease activity. Characterization of the homologue proteins and chimeric proteins between the homologues and SSP, all of which are produced in E. coli, has shown that they are membrane proteins that are localized in the outer membrane in the same manner as for SSP. By use of the COOH-terminal domain of SSP, pseudoazurin was exported to the cell surface of E. coli, which proves the usefulness of the SSP secretory system in the export of foreign proteins across the outer membrane.  相似文献   

16.
Recently, we have identified a novel topogenic sequence at the C terminus of Escherichia coli haemolysin (HlyA) which is essential for its efficient secretion into the medium. This discovery has introduced the possibility of using this secretion system for the release of chimeric proteins from E. coli directly into the medium. We have now successfully fused this C-terminal signal to a hybrid protein containing a few residues of beta-galactosidase and the majority of the E. coli outer membrane porin OmpF lacking its own N-terminal signal sequence. We find that this chimeric protein is specifically translocated across the inner and outer membranes and is released into the medium. In addition, we have further localized the HlyA secretion signal to the final 113 amino acids of the C terminus. In fact, a specific secretion signal appears to reside at least in part within the last 27 amino acids of HlyA.  相似文献   

17.
The full-length cDNA encoding RNase Rh, which is secreted extracellularly by Rhizopus niveus, was isolated and its nucleotide sequence was determined. It was placed under control of the promoter of the glyceraldehyde 3-phosphate dehydrogenase gene of Saccharomyces cerevisiae in a high expression vector in yeast. Since yeast cells transformed by this plasmid poorly secreted RNase into the medium, the plasmid pYE RNAP-Rh was constructed, in which the signal sequence of RNase Rh was replaced by the prepro-sequence of aspartic proteinase-I, one of the extracellular enzymes secreted by R. niveus. Yeast cells harboring pYE RNAP-Rh produced RNase efficiently (ca. 40 micrograms/ml) into the medium. The product was a mixture of six enzymes (RNase RNAP-Rhs) having 3, 5, 9, 13, 14, and 16 additional amino acid residues attached to the amino terminus of the mature RNase Rh. The major product was the RNase with three additional amino acids at the amino terminus. Limited digestion of RNase RNAP-Rhs with staphylococcal V8 protease succeeded in shortening the various lengths of extra amino acid residues attached to the amino terminus of RNase Rh, yielding an RNase that has 3 additional amino acids at the amino terminus. It has been named RNase RNAP-Rh. The RNase RNAP-Rh showed the same specific activity and CD spectra as those of RNase Rh, suggesting that the two have similar conformations to each other around aromatic amino acid residues and the peptide backbone.  相似文献   

18.
The expressed gene (pul) for a thermostable pullulanase from Clostridium thermohydrosulfuricum was cloned into Escherichia coli. The enzyme was purified from cell extracts of E. coli by thermoinactivation, ammonium sulphate precipitation and gel exclusion. The purified enzyme was characterized as monomer with both pullulanase and glucoamylase activities. The general physico-chemical and catalytic properties of this enzyme were obtained. In particular, pullulanase and glucoamylase activities were stable and optimally active at 65 degrees C. The pH optimum for activity was 5.8. The amino acid composition and amino acid sequence of N-terminal end were estimated.  相似文献   

19.
Extracellular glutathione (GSH) is degraded by an external cell-surface enzyme, γ-glutamyltranspeptidase (γ-GT). The products are transported into cells to participate in important cellular processes. In the present study, we tested the hypothesis that extracellular GSH is a source of glutamic acid for cells that express γ-GT. Under a glutamine-deficient culture condition, the extracellular GSH-supplemented glutamic acid would enhance intracellular glutamine synthesis, thereby stimulating cell proliferation. Human lung carcinoma A549 cells were cultured in glutamine-deficient Dulbecco's modified Eagle medium, and they did not proliferate unless glutamine was supplemented. Extracellular GSH, however, provoked a partial proliferation. The GSH effect correlated with a high level of γ-GT activity and an increased intracellular level of glutamic acid. A constituent amino acid of GSH, glutamic acid but not cysteine, produced the same growth-stimulatory effect as GSH. Furthermore, neither oxothiazolidine-4-carboxylate (OTC), a celluar cysteine-delivery compound, nor cysteinylglycine, a dipeptide released from the γ-GT reaction, stimulated cell proliferation. Moreover, buthionine sulfoximine (BSO), a selective inhibitor of γ-glutamylcysteine synthetase, enhanced the GSH growth stimulatory effect, suggesting that increased cellular GSH synthesis does not correlate with cell growth stimulation. The results obtained demonstrated that glutamine is required for A549 cell proliferation and exogenous GSH partially substitutes for the growth stimulatory action of glutamine. It also suggests that the glutamic acid rather than the cysteine released from the GSH is responsible for the cell proliferation. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Tumor necrosis factor-alpha (TNF-alpha), a protein released by activated macrophages, is involved in a wide variety of human diseases including septic shock, cachexia, and chronic inflammation. TNF binding protein (TNF-BP), a glycoprotein with high affinity to TNF-alpha isolated from urine, acts as an inhibitor of TNF-alpha by competing with the cell-surface TNF receptor. We report here the partial amino acid sequencing of human TNF-BP as well as the isolation, sequence, and expression of cDNA clones encoding a human and rat TNF receptor. The calculated Mr of the mature human and rat TNF receptor chains is 47,526 and 48,072, respectively. The extracellular ligand binding domain represents the soluble TNF-BP which is released by proteolytic cleavage. TNF-BP contains 24 cysteine residues and three potential N-glycosylation sites and shows sequence homology to the extracellular portions of TNF-R p80 chain and nerve growth factor receptor. Transfection of the human TNF receptor cDNA into mammalian cells resulted in increased binding capacity for TNF-alpha and increased reactivity with a monoclonal antibody directed against the human TNF receptor chain p60. When a stop codon was introduced into the cDNA at the site corresponding to the carboxyl terminus of TNF-BP, transfected cells secreted a protein that reacted with antibodies raised against natural TNF-BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号