首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Agrobacterium tumefaciens harboring a Ti plasmid causes crown gall disease in dicot plants by transferring its T-DNA into plant chromosomes. Iron acquisition plays an important role for pathogenicity in animal pathogens and several phytopathogens and for growth in the rhizosphere and on plant surfaces. Under iron-limiting condition, bacteria produce various iron-chelating agents called siderophores. Agrobacterium strains have the diversity in producing siderophores and a certain strain produces a typical catechol-type siderophore, called agrobactin, although its biosynthesis genes have not been analyzed yet. Here we describe the cloning and characterization of a functional gene cluster involved in ferric iron uptake in A. tumefaciens strain MAFF301001. Four complete open reading frames (ORFs) were found in 5-kb region of a genomic library clone 1A3. We named these genes agb, after agrobactin. agbC, agbE, agbB and agbA genes were identified in this order, and narrow intergenic spaces suggested that these genes constitute an operon. Predicted agb gene products and their phylogenetic analysis showed sequence similarity with enzymes which are involved in ferric iron uptake in other bacteria. Southern hybridization analysis clearly indicated the location of agb genes on the linear chromosome in strain MAFF301001 but the complete lack in another A. tumefaciens strain C58. Mutation analysis of agbB revealed that it is essential for growth and production of catechol compounds in iron-limiting medium.  相似文献   

2.
3.
The Agrobacterium tumefaciens virulence determinant ChvE is a periplasmic binding protein which participates in chemotaxis and virulence gene induction in response to monosaccharides which occur in the plant wound environment. The region downstream of the A. tumefaciens chvE gene was cloned and sequenced for nucleotide and expression analysis. Three open reading frames transcribed in the same direction as chvE were revealed. The first two, together with chvE, encode putative proteins of a periplasmic binding protein-dependent sugar uptake system, or ABC-type (ATP binding cassette) transporter. The third open reading frame encodes a protein of unknown function. The deduced transporter gene products are related on the amino acid level to bacterial sugar transporters and probably function in glucose and galactose uptake. We have named these genes gguA, -B, and -C, for glucose galactose uptake. Mutations in gguA, gguB, or gguC do not affect virulence of A. tumefaciens on Kalanchoe diagremontiana; growth on 1 mM galactose, glucose, xylose, ribose, arabinose, fucose, or sucrose; or chemotaxis toward glucose, galactose, xylose, or arabinose.  相似文献   

4.
Genome of A. tumefaciens contains a linear and a circular chromosome. As an initial step of elucidating the structural and functional genomics of this bacterium, linkage map of the left region of its linear chromosome was constructed. Total genomic libraries of A. tumefaciens MAFF301001 were constructed in BAC vectors namely, pFOS1 and pBeloBAC11. Upon construction of sub-libraries, minimum overlapping clones needed to cover the left region was determined. So far, four contigs have been assembled with a total of 19 overlapping clones. Detailed EcoRI physical map of contig III was constructed and it covers a 110 kb region of the Pme5 fragment of the linear chromosome. Seven end regions of the linking clones were partially sequenced but no gene existence was determined due to low homology.  相似文献   

5.
Enterobacter sakazakii is considered an opportunistic pathogen for premature infants and neonates. Although E. sakazakii has been isolated from various types of food, recontaminated dried infant formula has been epidemiologically identified as the major source of infection. Amongst others, alpha-glucosidase activity is one of the most important biochemical features, which differentiates E. sakazakii from other species in the family Enterobacteriaceae and has therefore been used as a selective marker in the development of differential media. However, it has been shown, that methods based on this biochemical feature are prone to producing false-positive results for presumptive E. sakazakii colonies due to the presence of this enzymatic activity in other species of the Enterobacteriaceae. Therefore, elucidation of the molecular basis responsible for the biochemical feature in E. sakazakii would provide novel targets suitable for the development of more specific and direct identification systems for this organism. By applying the bacterial artificial chromosome (BAC) approach, along with heterologous gene expression in Escherichia coli, the molecular basis of the alpha-glucosidase activity in E. sakazakii was characterized. Here we report the identification of two different alpha-glucosidase encoding genes. Homology searches of the deduced amino acid sequences revealed that the proteins belong to a cluster of gene products putatively responsible for the metabolism of isomaltulose (palatinose; 6-O-alpha-d-glucopyranosyl-d-fructose). The glycosyl-hydrolyzing activity of each protein was demonstrated by subcloning the respective open reading frames and screening of E. coli transformants for their ability to hydrolyze 4-methyl-umbelliferyl-alpha-d-glucoside. Analysis at the protein level revealed that both enzymes belong to the intracellular fraction of cell proteins. The presence of the postulated palatinose metabolism was proven by growth experiments using this sugar as a sole carbon source.  相似文献   

6.
ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 A, b = 93.79 A, and c = 140.29 A (alpha = beta = gamma = 90 degrees ) and space group I 222. The A. tumefaciens ADPGlc PPase model was refined to 2.1 A with an R factor = 22% and R free = 26.6%. The model consists of two domains: an N-terminal alphabetaalpha sandwich and a C-terminal parallel beta-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.  相似文献   

7.
In addition to a unique tumor-inducing (Ti) plasmid, the plant pathogenic bacterium Agrobacterium tumefaciens has an unconventional chromosomal organization. Our previous studies on A. tumefaciens MAFF301001 revealed that it possesses a 2 Mb linear and a 2.8 Mb circular chromosome plus a 206.479 kbp Ti plasmid (pTi-SAKURA). In this study, a linkage map for the left half of its linear chromosome covering a 900 kbp region was constructed and the number of potential genes existing in the region was estimated. The linkage map consists of 31 BAC and 8 lambda phage recombinants without any gaps. It confirmed the size and all the structural landmarks indicated in the corresponding region of our previously constructed physical map for the linear chromosome. Sequencing analysis of the end-regions of each linking clone led to the identification of 6 genes and another 27 potential genes or ORFs, including genes and/or gene clusters responsible for homologous recombination (ruvB), trehalose/maltose sugar transport (thuR, thuG) and alanine catabolism (dadR). Two virulence-related gene homologues (attK and celB), previously reported in the circular chromosome of a different strain of A. tumefaciens were found in this region. These findings will provide a ready-to-use linkage map for further functional analysis of the linear chromosome.  相似文献   

8.
9.
10.
We used the transposon Mu dI1681 to identify genes on the Agrobacterium tumefaciens chromosome that are inducible by extracts from carrot roots. One such locus (picA, for plant inducible chromosomal), harbored by A. tumefaciens At156, was inducible 10- to 50-fold by these extracts. Mutation of picA had no detectable effect upon bacterial growth or virulence under laboratory assay conditions. However, A. tumefaciens cells harboring a mutated picA locus aggregated into long "ropes" when incubated with pea root tip cells. Such aggregation was not displayed by the parental strain A. tumefaciens A136. A preliminary characterization of the inducing compound in the carrot root extract suggests that the active substance is an acidic polysaccharide that is most likely derived from the pectic portion of the plant cell wall.  相似文献   

11.
Analysis of the entire Agrobacterium tumefaciens C58 genome by pulsed-field gel electrophoresis (PFGE) reveals four replicons: two large molecules of 3,000 and 2,100 kb, the 450-kb cryptic plasmid, and the 200-kb Ti plasmid. Digestion by PacI or SwaI generated 12 or 14 fragments, respectively. The two megabase-sized replicons, used as probes, hybridize with different restriction fragments, showing that these replicons are two independent genetic entities. A 16S rRNA probe and genes encoding functions essential to the metabolism of the organism were found to hybridize with both replicons, suggesting their chromosomal nature. In PFGE, megabase-sized circular DNA does not enter the gel. The 2.1-Mb chromosome always generated an intense band, while the 3-Mb band was barely visible. After linearization of the DNA by X-irradiation, the intensity of the 3-Mb band increased while that of the 2.1-Mb remained constant. This suggests that the 3-Mb chromosome is circular and that the 2.1-Mb chromosome is linear. To confirm this hypothesis, genomic DNA, trapped in an agarose plug, was first submitted to PFGE to remove any linear DNA present. The plug was then recovered, and the remaining DNA was digested with either PacI or SwaI and then separated by PFGE. The fragments corresponding to the small chromosome were found to be absent, while those corresponding to the circular replicon remained, further proof of the linear nature of the 2.1-Mb chromosome.  相似文献   

12.
Agrobacterium tumefaciens possesses three iron-containing superoxide dismutases (FeSods) encoded by distinct genes with differential expression patterns. SodBI and SodBII are cytoplasmic isozymes, while SodBIII is a periplasmic isozyme. sodBI is expressed at a high levels throughout all growth phases. sodBII expression is highly induced upon exposure to superoxide anions in a SoxR-dependent manner. sodBIII is expressed only during stationary phase. Analysis of the physiological function of sods reveals that the inactivation of sodBI markedly reduced levels of resistance to a superoxide generator, menadione. A mutant lacking all three Sod enzymes is the most sensitive to menadione treatment, indicating that all sods contribute at various levels towards the overall menadione resistance level. Sods also have important roles in A. tumefaciens virulence toward a host plant. A sodBI but not a sodBII or sodBIII mutant showed marked reduction in its ability to induce tumors on tobacco leaf discs, while the triple sod null mutant is avirulent.  相似文献   

13.
Kumar RB  Das A 《Journal of bacteriology》2001,183(12):3636-3641
The VirB8 protein of Agrobacterium tumefaciens is essential for DNA transfer to plants. VirB8, a 237-residue polypeptide, is an integral membrane protein with a short N-terminal cytoplasmic domain. It interacts with two transport pore proteins, VirB9 and VirB10, in addition to itself. To study the role of these interactions in DNA transfer and to identify essential amino acids of VirB8, we introduced random mutations in virB8 by the mutagenic PCR method. The putative mutants were tested for VirB8 function by the ability to complement a virB8 deletion mutant in tumor formation assays. After multiple rounds of screening 13 mutants that failed to complement the virB8 deletion mutation were identified. Analysis of the mutant strains by DNA sequence analysis, Western blot assays, and reconstruction of new point mutations led to the identification of five amino acid residues that are essential for VirB8 function. The substitution of glycine-78 to serine, serine-87 to leucine, alanine-100 to valine, arginine-107 to proline or alanine, and threonine-192 to methionine led to the loss of VirB8 activity. When introduced into the wild-type strain, virB8(S87L) partially suppressed the tumor forming ability of the wild-type protein. Analysis of protein-protein interaction by the yeast two-hybrid assay indicated that VirB8(R107P) is defective in interactions with both VirB9 and VirB10. A second mutant VirB8(S87L) is defective in interaction with VirB9.  相似文献   

14.
15.
16.
The complete nucleotide sequence of the Agrobacterium tumefaciens recA gene was determined. A comparison of the translated open reading frame of the gene with other known recA sequences revealed significant sequence conservation. However, unlike its Escherichia coli equivalent, A. tumefaciens recA lacks the upstream 'SOS box', suggesting a different mechanism of regulation for this gene.  相似文献   

17.
Lai EM  Shih HW  Wen SR  Cheng MW  Hwang HH  Chiu SH 《Proteomics》2006,6(14):4130-4136
Agrobacterium tumefaciens causes crown gall disease in a wide range of plants by transforming plants through the transfer and integration of its transferred DNA (T-DNA) into the host genome. In the present study, we used two-dimensional gel electrophoresis to examine the protein expression profiles of A. tumefaciens in response to the phenolic compound acetosyringone (AS), a known plant-released virulence (vir) gene inducer. Using mass spectrometry, we identified 11 proteins consisting of 9 known AS-induced Vir proteins and 2 newly discovered AS-induced proteins, an unknown protein Y4mC (Atu6162) and a small heat shock protein HspL (Atu3887). Further expression analysis revealed that the AS-induced expression of Y4mC and HspL is regulated by the VirA/VirG two-component system. This report presents the first proteomics study successfully identifying both known and new AS-induced proteins that are implicated in Agrobacterium virulence.  相似文献   

18.
A newly isolated gene from Agrobacterium tumefaciens (A. tumefaciens), which encoded a decaprenyl diphosphate synthase, was cloned in Escherichia coli (E. coli), and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1077 bp capable of encoding a 358-amino-acid protein with a calculated isoelectric point of pH 5.16 and a molecular mass of 38 960 Da. The primary structure of the enzyme shared significant homology with prenyl diphosphate synthases from various sources. The deduced amino acid sequence included oligopeptide DDxxD aspartate-rich domains conserved in the majority of prenyl diphosphate synthases. High levels of the active enzyme were expressed in the soluble fraction and were readily purified to homogeneity by Ni-NTA chromatography. E. coli JM109 harboring the dps gene produced ubiquinone-10 in addition to endogenous ubiquinone-8, while E. coli JM109 harboring the dps gene mutated on the DDxxD domain lost the ability to produce ubiquinone-10, which suggests that the A. tumefaciens dps gene is functionally expressed in E. coli and that it encodes a decaprenyl diphosphate synthase.  相似文献   

19.
The structure of the Atu1476 protein from Agrobacterium tumefaciens was determined at 2 Å resolution. The crystal structure and biochemical characterization of this enzyme support the conclusion that this protein is an S-formylglutathione hydrolase (AtuSFGH). The three-dimensional structure of AtuSFGH contains the α/β hydrolase fold topology and exists as a homo-dimer. Contacts between the two monomers in the dimer are formed both by hydrogen bonds and salt bridges. Biochemical characterization reveals that AtuSFGH hydrolyzes C—O bonds with high affinity toward short to medium chain esters, unlike the other known SFGHs which have greater affinity toward shorter chained esters. A potential role for Cys54 in regulation of enzyme activity through S-glutathionylation is also proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号