首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Geller F  Ziegler A 《Human heredity》2002,54(3):111-117
One well-known approach for the analysis of transmission-disequilibrium is the investigation of single nucleotide polymorphisms (SNPs) in trios consisting of an affected child and its parents. Results may be biased by erroneously given genotypes. Various reasons, among them sample swap or wrong pedigree structure, represent a possible source for biased results. As these can be partly ruled out by good study conditions together with checks for correct pedigree structure by a series of independent markers, the remaining main cause for errors is genotyping errors. Some of the errors can be detected by Mendelian checks whilst others are compatible with the pedigree structure. The extent of genotyping errors can be estimated by investigating the rate of detected genotyping errors by Mendelian checks. In many studies only one SNP of a specific genomic region is investigated by TDT which leaves Mendelian checks as the only tool to control genotyping errors. From the rate of detected errors the true error rate can be estimated. Gordon et al. [Hum Hered 1999;49:65-70] considered the case of genotyping errors that occur randomly and independently with some fixed probability for the wrong ascertainment of an allele. In practice, instead of single alleles, SNP genotypes are determined. Therefore, we study the proportion of detected errors (detection rate) based on genotypes. In contrast to Gordon et al., who reported detection rates between 25 and 30%, we obtain higher detection rates ranging from 39 up to 61% considering likely error structures in the data. We conclude that detection rates are probably substantially higher than those reported by Gordon et al.  相似文献   

2.
Gene-mapping studies routinely rely on checking for Mendelian transmission of marker alleles in a pedigree, as a means of screening for genotyping errors and mutations, with the implicit assumption that, if a pedigree is consistent with Mendel's laws of inheritance, then there are no genotyping errors. However, the occurrence of inheritance inconsistencies alone is an inadequate measure of the number of genotyping errors, since the rate of occurrence depends on the number and relationships of genotyped pedigree members, the type of errors, and the distribution of marker-allele frequencies. In this article, we calculate the expected probability of detection of a genotyping error or mutation as an inheritance inconsistency in nuclear-family data, as a function of both the number of genotyped parents and offspring and the marker-allele frequency distribution. Through computer simulation, we explore the sensitivity of our analytic calculations to the underlying error model. Under a random-allele-error model, we find that detection rates are 51%-77% for multiallelic markers and 13%-75% for biallelic markers; detection rates are generally lower when the error occurs in a parent than in an offspring, unless a large number of offspring are genotyped. Errors are especially difficult to detect for biallelic markers with equally frequent alleles, even when both parents are genotyped; in this case, the maximum detection rate is 34% for four-person nuclear families. Error detection in families in which parents are not genotyped is limited, even with multiallelic markers. Given these results, we recommend that additional error checking (e.g., on the basis of multipoint analysis) be performed, beyond routine checking for Mendelian consistency. Furthermore, our results permit assessment of the plausibility of an observed number of inheritance inconsistencies for a family, allowing the detection of likely pedigree-rather than genotyping-errors in the early stages of a genome scan. Such early assessments are valuable in either the targeting of families for resampling or discontinued genotyping.  相似文献   

3.
The identification of genes contributing to complex diseases and quantitative traits requires genetic data of high fidelity, because undetected errors and mutations can profoundly affect linkage information. The recent emphasis on the use of the sibling-pair design eliminates or decreases the likelihood of detection of genotyping errors and marker mutations through apparent Mendelian incompatibilities or close double recombinants. In this article, we describe a hidden Markov method for detecting genotyping errors and mutations in multilocus linkage data. Specifically, we calculate the posterior probability of genotyping error or mutation for each sibling-pair-marker combination, conditional on all marker data and an assumed genotype-error rate. The method is designed for use with sibling-pair data when parental genotypes are unavailable. Through Monte Carlo simulation, we explore the effects of map density, marker-allele frequencies, marker position, and genotype-error rate on the accuracy of our error-detection method. In addition, we examine the impact of genotyping errors and error detection and correction on multipoint linkage information. We illustrate that even moderate error rates can result in substantial loss of linkage information, given efforts to fine-map a putative disease locus. Although simulations suggest that our method detects 相似文献   

4.
Errors while genotyping are inevitable and can reduce the power to detect linkage. However, does genotyping error have the same impact on linkage results for single-nucleotide polymorphism (SNP) and microsatellite (MS) marker maps? To evaluate this question we detected genotyping errors that are consistent with Mendelian inheritance using large changes in multipoint identity-by-descent sharing in neighboring markers. Only a small fraction of Mendelian consistent errors were detectable (e.g., 18% of MS and 2.4% of SNP genotyping errors). More SNP genotyping errors are Mendelian consistent compared to MS genotyping errors, so genotyping error may have a greater impact on linkage results using SNP marker maps. We also evaluated the effect of genotyping error on the power and type I error rate using simulated nuclear families with missing parents under 0, 0.14, and 2.8% genotyping error rates. In the presence of genotyping error, we found that the power to detect a true linkage signal was greater for SNP (75%) than MS (67%) marker maps, although there were also slightly more false-positive signals using SNP marker maps (5 compared with 3 for MS). Finally, we evaluated the usefulness of accounting for genotyping error in the SNP data using a likelihood-based approach, which restores some of the power that is lost when genotyping error is introduced.  相似文献   

5.
Saunders IW  Brohede J  Hannan GN 《Genomics》2007,90(3):291-296
A simple method of inferring the genotyping error rate of SNP arrays and similar high-throughput genotyping methods from Mendelian errors is described. Application to genotypes from small families using the Affymetrix GeneChip Human Mapping 50 k Array indicates an error rate of about 0.1%, and this rate can be reduced by increasing the quality criterion for calls, though at the cost of a reduced genotype call rate, which limits the benefit available. Simulated data are used to show that the number of SNPs on this array is sufficient for such a low error rate to have little impact on identical by descent-based inference for disease linkage in sib-pair studies.  相似文献   

6.
In the context of parentage assignment using genomic markers, key issues are genotyping errors and an absence of parent genotypes because of sampling, traceability or genotyping problems. Most likelihood‐based parentage assignment software programs require a priori estimates of genotyping errors and the proportion of missing parents to set up meaningful assignment decision rules. We present here the R package APIS, which can assign offspring to their parents without any prior information other than the offspring and parental genotypes, and a user‐defined, acceptable error rate among assigned offspring. Assignment decision rules use the distributions of average Mendelian transmission probabilities, which enable estimates of the proportion of offspring with missing parental genotypes. APIS has been compared to other software (CERVUS, VITASSIGN), on a real European seabass (Dicentrarchus labrax) single nucleotide polymorphism data set. The type I error rate (false positives) was lower with APIS than with other software, especially when parental genotypes were missing, but the true positive rate was also lower, except when the theoretical exclusion power reached 0.99999. In general, APIS provided assignments that satisfied the user‐set acceptable error rate of 1% or 5%, even when tested on simulated data with high genotyping error rates (1% or 3%) and up to 50% missing sires. Because it uses the observed distribution of Mendelian transmission probabilities, APIS is best suited to assigning parentage when numerous offspring (>200) are genotyped. We have demonstrated that APIS is an easy‐to‐use and reliable software for parentage assignment, even when up to 50% of sires are missing.  相似文献   

7.
OBJECTIVE: In affected sib pair studies without genotyped parents the effect of genotyping error is generally to reduce the type I error rate and power of tests for linkage. The effect of genotyping error when parents have been genotyped is unknown. We investigated the type I error rate of the single-point Mean test for studies in which genotypes of both parents are available. METHODS: Datasets were simulated assuming no linkage and one of five models for genotyping error. In each dataset, Mendelian-inconsistent families were either excluded or regenotyped, and then the Mean test applied. RESULTS: We found that genotyping errors lead to an inflated type I error rate when inconsistent families are excluded. Depending on the genotyping-error model assumed, regenotyping inconsistent families has one of several effects. It may produce the same type I error rate as if inconsistent families are excluded; it may reduce the type I error, but still leave an anti-conservative test; or it may give a conservative test. Departures of the type I error rate from its nominal level increase with both the genotyping error rate and sample size. CONCLUSION: We recommend that markers with high error rates either be excluded from the analysis or be regenotyped in all families.  相似文献   

8.
Misspecification of relationships and of genotype data can cause problems in linkage analyses based on genome-scan data. Previous reports have focused on pairwise relationships and a simple error model. This article considers the increased information available from the joint analysis of trios of individuals, integrating this analysis with an error model that allows for the most common genotyping errors. Given observed marker phenotypes in a genome scan, computational methods are outlined both for likelihoods of relationships and for the posterior probabilities of underlying genotypes. The methods are applied to examples from two real data sets: one has been previously well analyzed, and, hence, Mendelian inconsistencies have been removed; the other typifies the pedigree and genotype errors encountered in the initial analyses of a study. It is demonstrated that the coupling of relationship inference and error detection is quite effective, that the error model is computationally practical, and that data on a third relative can often clarify relationships.  相似文献   

9.
It is well known that genotyping errors lead to loss of power in gene-mapping studies and underestimation of the strength of correlations between trait- and marker-locus genotypes. In two-point linkage analysis, these errors can be absorbed in an inflated recombination-fraction estimate, leaving the test statistic quite robust. In multipoint analysis, however, genotyping errors can easily result in false exclusion of the true location of a disease-predisposing gene. In a companion article, we described a "complex-valued" extension of the recombination fraction to accommodate errors in the assignment of trait-locus genotypes, leading to a multipoint LOD score with the same robustness to errors in trait-locus genotypes that is seen with the conventional two-point LOD score. Here, a further extension of this model to "hypercomplex-valued" recombination fractions (hereafter referred to as "hypercomplex recombination fractions") is presented, to handle random and systematic sources of marker-locus genotyping errors. This leads to a multipoint method (either "model-based" or "model-free") with the same robustness to marker-locus genotyping errors that is seen with conventional two-point analysis but with the advantage that multiple marker loci can be used jointly to increase meiotic informativeness. The cost of this increased robustness is a decrease in fine-scale resolution of the estimated map location of the trait locus, in comparison with traditional multipoint analysis. This probability model further leads to algorithms for the estimation of the lower bounds for the error rates for genomewide and locus-specific genotyping, based on the null-hypothesis distribution of the LOD-score statistic in the presence of such errors. It is argued that those genome scans in which the LOD score is 0 for >50% of the genome are likely to be characterized by high rates of genotyping errors in general.  相似文献   

10.
Genotyping errors are present in almost all genetic data and can affect biological conclusions of a study, particularly for studies based on individual identification and parentage. Many statistical approaches can incorporate genotyping errors, but usually need accurate estimates of error rates. Here, we used a new microsatellite data set developed for brown rockfish (Sebastes auriculatus) to estimate genotyping error using three approaches: (i) repeat genotyping 5% of samples, (ii) comparing unintentionally recaptured individuals and (iii) Mendelian inheritance error checking for known parent–offspring pairs. In each data set, we quantified genotyping error rate per allele due to allele drop‐out and false alleles. Genotyping error rate per locus revealed an average overall genotyping error rate by direct count of 0.3%, 1.5% and 1.7% (0.002, 0.007 and 0.008 per allele error rate) from replicate genotypes, known parent–offspring pairs and unintentionally recaptured individuals, respectively. By direct‐count error estimates, the recapture and known parent–offspring data sets revealed an error rate four times greater than estimated using repeat genotypes. There was no evidence of correlation between error rates and locus variability for all three data sets, and errors appeared to occur randomly over loci in the repeat genotypes, but not in recaptures and parent–offspring comparisons. Furthermore, there was no correlation in locus‐specific error rates between any two of the three data sets. Our data suggest that repeat genotyping may underestimate true error rates and may not estimate locus‐specific error rates accurately. We therefore suggest using methods for error estimation that correspond to the overall aim of the study (e.g. known parent–offspring comparisons in parentage studies).  相似文献   

11.
Identifying marker typing incompatibilities in linkage analysis.   总被引:3,自引:3,他引:0       下载免费PDF全文
A common problem encountered in linkage analyses is that execution of the computer program is halted because of genotypes in the data that are inconsistent with Mendelian inheritance. Such inconsistencies may arise because of pedigree errors or errors in typing. In some cases, the source of the inconsistencies is easily identified by examining the pedigree. In others, the error is not obvious, and substantial time and effort are required to identify the responsible genotypes. We have developed two methods for automatically identifying those individuals whose genotypes are most likely the cause of the inconsistencies. First, we calculate the posterior probability of genotyping error for each member of the pedigree, given the marker data on all pedigree members and allowing anyone in the pedigree to have an error. Second, we identify those individuals whose genotypes could be solely responsible for the inconsistency in the pedigree. We illustrate these methods with two examples: one a pedigree error, the second a genotyping error. These methods have been implemented as a module of the pedigree analysis program package MENDEL.  相似文献   

12.
This investigation was undertaken to assess the sensitivity and specificity of the genotyping error detection function of the computer program SIMWALK2. We chose to examine chromosome 22, which had 7 microsatellite markers, from a single simulated replicate (330 pedigrees with a pattern of missing genotype data similar to the Framingham families). We created genotype errors at five overall frequencies (0.0, 0.025, 0.050, 0.075, and 0.100) and applied SIMWALK2 to each of these five data sets, respectively assuming that the total error rate (specified in the program), was at each of these same five levels. In this data set, up to an assumed error rate of 10%, only 50% of the Mendelian-consistent mistypings were found under any level of true errors. And since as many as 70% of the errors detected were false-positives, blanking suspect genotypes (at any error probability) will result in a reduction of statistical power due to the concomitant blanking of correctly typed alleles. This work supports the conclusion that allowing for genotyping errors within likelihood calculations during statistical analysis may be preferable to choosing an arbitrary cut-off.  相似文献   

13.
 Microsatellites were used for genetic analysis of maternal half-sib families of Quercus robur, pedunculate oak, a highly outcrossing tree species. A model half-sib family including the mother tree and 28 offspring individuals as well as samples from six single tree harvests from a forestry company, 4–8 individuals each, were genotyped at 9 microsatellite loci. No prior information about the genotypes of the mother trees were available for these six seedlot samples. Analysis of the model half-sib family revealed that the maternal genotypes can be inferred from the offspring genotypes due to codominant Mendelian inheritance of the microsatellites. Analysis of the single tree harvests, supplied as six maternal half-sib families, revealed contaminations with unrelated seedlings in four out of six cases. Average relatedness between the remaining individuals indicated that they were indeed half-sibs, probably with a proportion of full-sibs among them. For five samples the genotypes of the mother trees were partially inferred from the offspring genotypes. The supposed number of five different mother trees was confirmed by direct comparison of the maternal genotypes and by pairwise FST calculations between families. We show that correct genotype reconstruction can be confirmed by monitoring recombination events between linked markers. Our results demonstrate that microsatellite analysis is a suitable means to approach two key problems of legal regulations on the marketing of seed material from pedunculate oak: the number of trees included in seed harvests and the detection of seed contaminations. Received: 4 November 1998 / Accepted: 28 November 1998  相似文献   

14.
Inferring the haplotypes of the members of a pedigree from their genotypes has been extensively studied. However, most studies do not consider genotyping errors and de novo mutations. In this paper, we study how to infer haplotypes from genotype data that may contain genotyping errors, de novo mutations, and missing alleles. We assume that there are no recombinants in the genotype data, which is usually true for tightly linked markers. We introduce a combinatorial optimization problem, called haplotype configuration with mutations and errors (HCME), which calls for haplotype configurations consistent with the given genotypes that incur no recombinants and require the minimum number of mutations and errors. HCME is NP-hard. To solve the problem, we propose a heuristic algorithm, the core of which is an integer linear program (ILP) using the system of linear equations over Galois field GF(2). Our algorithm can detect and locate genotyping errors that cannot be detected by simply checking the Mendelian law of inheritance. The algorithm also offers error correction in genotypes/haplotypes rather than just detecting inconsistencies and deleting the involved loci. Our experimental results show that the algorithm can infer haplotypes with a very high accuracy and recover 65%-94% of genotyping errors depending on the pedigree topology.  相似文献   

15.
Several programs are currently available for the detection of genotyping error that may or may not be Mendelianly inconsistent. However, no systematic study exists that evaluates their performance under varying pedigree structures and sizes, marker spacing, and allele frequencies. Our simulation study compares four multipoint methods: Merlin, Mendel4, SimWalk2, and Sibmed. We look at empirical thresholds, power, and false-positive rates on 7 small pedigree structures that included sibships with and without genotyped parents, and a three-generation pedigree, using 11 microsatellite markers with 3 different map spacings. Simulated data includes 5,000 replicates of each pedigree structure and marker map, with random genotyping errors in about 4% of the middle marker's genotypes. We found that the default thresholds used by these programs provide low power (47-72%). Power is improved more by adding genotyped siblings than by using more closely spaced markers. Some mistyping methods are sensitive to the frequencies of the observed alleles. Siblings of mistyped individuals have elevated false-positive rates, as do markers close to the mistyped marker. We conclude that thresholds should be decided based on the pedigree and marker data and that greater focus should be placed on modeling genotyping error when computing likelihoods, rather than on detecting and eliminating genotyping errors.  相似文献   

16.
Errors in genotype calling can have perverse effects on genetic analyses, confounding association studies, and obscuring rare variants. Analyses now routinely incorporate error rates to control for spurious findings. However, reliable estimates of the error rate can be difficult to obtain because of their variance between studies. Most studies also report only a single estimate of the error rate even though genotypes can be miscalled in more than one way. Here, we report a method for estimating the rates at which different types of genotyping errors occur at biallelic loci using pedigree information. Our method identifies potential genotyping errors by exploiting instances where the haplotypic phase has not been faithfully transmitted. The expected frequency of inconsistent phase depends on the combination of genotypes in a pedigree and the probability of miscalling each genotype. We develop a model that uses the differences in these frequencies to estimate rates for different types of genotype error. Simulations show that our method accurately estimates these error rates in a variety of scenarios. We apply this method to a dataset from the whole-genome sequencing of owl monkeys (Aotus nancymaae) in three-generation pedigrees. We find significant differences between estimates for different types of genotyping error, with the most common being homozygous reference sites miscalled as heterozygous and vice versa. The approach we describe is applicable to any set of genotypes where haplotypic phase can reliably be called and should prove useful in helping to control for false discoveries.  相似文献   

17.
Family-based association studies have been widely used to identify association between diseases and genetic markers. It is known that genotyping uncertainty is inherent in both directly genotyped or sequenced DNA variations and imputed data in silico. The uncertainty can lead to genotyping errors and missingness and can negatively impact the power and Type I error rates of family-based association studies even if the uncertainty is independent of disease status. Compared with studies using unrelated subjects, there are very few methods that address the issue of genotyping uncertainty for family-based designs. The limited attempts have mostly been made to correct the bias caused by genotyping errors. Without properly addressing the issue, the conventional testing strategy, i.e. family-based association tests using called genotypes, can yield invalid statistical inferences. Here, we propose a new test to address the challenges in analyzing case-parents data by using calls with high accuracy and modeling genotype-specific call rates. Our simulations show that compared with the conventional strategy and an alternative test, our new test has an improved performance in the presence of substantial uncertainty and has a similar performance when the uncertainty level is low. We also demonstrate the advantages of our new method by applying it to imputed markers from a genome-wide case-parents association study.  相似文献   

18.
Many exome sequencing studies of Mendelian disorders fail to optimally exploit family information. Classical genetic linkage analysis is an effective method for eliminating a large fraction of the candidate causal variants discovered, even in small families that lack a unique linkage peak. We demonstrate that accurate genetic linkage mapping can be performed using SNP genotypes extracted from exome data, removing the need for separate array-based genotyping. We provide software to facilitate such analyses.  相似文献   

19.
Errors in genotyping data have been shown to have a significant effect on the estimation of recombination fractions in high-resolution genetic maps. Previous estimates of errors in existing databases have been limited to the analysis of relatively few markers and have suggested rates in the range 0.5%-1.5%. The present study capitalizes on the fact that within the Centre d'Etude du Polymorphisme Humain (CEPH) collection of reference families, 21 individuals are members of more than one family, with separate DNA samples provided by CEPH for each appearance of these individuals. By comparing the genotypes of these individuals in each of the families in which they occur, an estimated error rate of 1.4% was calculated for all loci in the version 4.0 CEPH database. Removing those individuals who were clearly identified by CEPH as appearing in more than one family resulted in a 3.0% error rate for the remaining samples, suggesting that some error checking of the identified repeated individuals may occur prior to data submission. An error rate of 3.0% for version 4.0 data was also obtained for four chromosome 5 markers that were retyped through the entire CEPH collection. The effects of these errors on a multipoint map were significant, with a total sex-averaged length of 36.09 cM with the errors, and 19.47 cM with the errors corrected. Several statistical approaches to detect and allow for errors during linkage analysis are presented. One method, which identified families containing possible errors on the basis of the impact on the maximum lod score, showed particular promise, especially when combined with the limited retyping of the identified families. The impact of the demonstrated error rate in an established genotype database on high-resolution mapping is significant, raising the question of the overall value of incorporating such existing data into new genetic maps.  相似文献   

20.
Allelic dropout is a commonly observed source of missing data in microsatellite genotypes, in which one or both allelic copies at a locus fail to be amplified by the polymerase chain reaction. Especially for samples with poor DNA quality, this problem causes a downward bias in estimates of observed heterozygosity and an upward bias in estimates of inbreeding, owing to mistaken classifications of heterozygotes as homozygotes when one of the two copies drops out. One general approach for avoiding allelic dropout involves repeated genotyping of homozygous loci to minimize the effects of experimental error. Existing computational alternatives often require replicate genotyping as well. These approaches, however, are costly and are suitable only when enough DNA is available for repeated genotyping. In this study, we propose a maximum-likelihood approach together with an expectation-maximization algorithm to jointly estimate allelic dropout rates and allele frequencies when only one set of nonreplicated genotypes is available. Our method considers estimates of allelic dropout caused by both sample-specific factors and locus-specific factors, and it allows for deviation from Hardy–Weinberg equilibrium owing to inbreeding. Using the estimated parameters, we correct the bias in the estimation of observed heterozygosity through the use of multiple imputations of alleles in cases where dropout might have occurred. With simulated data, we show that our method can (1) effectively reproduce patterns of missing data and heterozygosity observed in real data; (2) correctly estimate model parameters, including sample-specific dropout rates, locus-specific dropout rates, and the inbreeding coefficient; and (3) successfully correct the downward bias in estimating the observed heterozygosity. We find that our method is fairly robust to violations of model assumptions caused by population structure and by genotyping errors from sources other than allelic dropout. Because the data sets imputed under our model can be investigated in additional subsequent analyses, our method will be useful for preparing data for applications in diverse contexts in population genetics and molecular ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号