首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have determined the structural organization and functional roles of centromere-specific DNA sequence repeats in cen1, the centromere region from chromosome I of the fission yeast Schizosaccharomyces pombe. cen1 is composed of various classes of repeated sequences designated K', K"(dgl), L, and B', arranged in a 34-kb inverted repeat surrounding a 4- to 5-kb nonhomologous central core. Artificial chromosomes containing various portions of the cen1 region were constructed and assayed for mitotic and meiotic centromere function in S. pombe. Deleting K' and L from the distal portion of one arm of the inverted repeat had no effect on mitotic centromere function but resulted in greatly increased precocious sister chromatid separation in the first meiotic division. A centromere completely lacking K' and L, but containing the central core, one copy of B' and K" in one arm, and approximately 2.5 kb of the core-proximal portion of B' in the other arm, was also fully functional mitotically but again did not maintain sister chromatid attachment in meiosis I. However, deletion of K" from this minichromosome resulted in complete loss of centromere function. Thus, one copy of at least a portion of the K" (dgl) repeat is absolutely required but is not sufficient for S. pombe centromere function. The long centromeric inverted-repeat region must be relatively intact to maintain sister chromatid attachment in meiosis I.  相似文献   

2.
3.
The DNA requirements for centromere function in fission yeast have been investigated using a minichromosome assay system. Critical elements of Schizosaccharomyces pombe centromeric DNA are portions of the centromeric central core and sequences within a 2.1-kilobase segment found on all three chromosomes as part of the K-type (K/K"/dg) centromeric repeat. The S. pombe centromeric central core contains DNA sequences that appear functionally redundant, and the inverted repeat motif that flanks the central core in all native fission yeast centromeres is not essential for centromere function in circular minichromosomes. Tandem copies of centromeric repeat K", in conjunction with the central core, exert an additive effect on centromere function, increasing minichromosome mitotic stability with each additional copy. Centromeric repeats B and L, however, and parts of the central core and its core-associated repeat are dispensable and cannot substitute for K-type sequences. Several specific protein binding sites have been identified within the centromeric K-type repeat, consistent with a recently proposed model for centromere/kinetochore function in S. pombe.  相似文献   

4.
Replication of centromere II of Schizosaccharomyces pombe.   总被引:2,自引:1,他引:1       下载免费PDF全文
The centromeric DNAs of Schizosaccharomyces pombe chromosomes resemble those of higher eukaryotes in being large and composed predominantly of repeated sequences. To begin a detailed analysis of the mode of replication of a complex centromere, we examined whether any sequences within S. pombe centromere II (cen2) have the ability to mediate autonomous replication. We found a high density of segments with such activity, including at least eight different regions comprising most of the repeated and unique centromeric DNA elements. A physical mapping analysis using two-dimensional gels showed that autonomous replication initiated within the S. pombe sequences in each plasmid. A two-dimensional gel analysis of replication on the chromosomes revealed that the K and L repeat elements, which occur in multiple copies at all three centromeres and comprise approximately 70% of total centromeric DNA mass in S. pombe, are both sites of replication initiation. In contrast, the unique cen2 central core, which contains multiple segments that can support autonomous replication, appears to be repressed for initiation on the chromosome. We discuss the implications of these findings for our understanding of DNA replication and centromere function.  相似文献   

5.
Gross variations in the structure of the centromere of Schizosaccharomyces pombe chromosome III (cen3) were apparent following characterization of this centromeric DNA in strain Sp223 and comparison of the structure with that of cen3 in three other commonly used laboratory strains. Further differences in centromere structure were revealed when the structure of the centromere of S. pombe chromosome II (cen2) was compared among common laboratory strains and when the structures of cen2 and cen3 from our laboratory strains were compared with those reported from other laboratories. Differences observed in cen3 structure include variations in the arrangement of the centromeric K repeats and an inverted orientation of the conserved centromeric central core. In addition, we have identified two laboratory strains that contain a minimal cen2 repeat structure that lacks the tandem copies of the cen2-specific block of K-L-B-J repeats characteristic of Sp223 cen2. We have also determined that certain centromeric DNA structural motifs are relatively conserved among the four laboratory strains and eight additional wild-type S. pombe strains isolated from various food and beverage sources. We conclude that in S. pombe, as in higher eukaryotes, the centromere of a particular chromosome is not a defined genetic locus but can contain significant variability. However, the basic DNA structural motif of a central core immediately flanked by inverted repeats is a common parameter of the S. pombe centromere.  相似文献   

6.
The chromatin structure of the central core region of Schizosaccharomyces pombe centromeric DNA is unusual. This distinctive chromatin structure is associated only with central core sequences in a functional context and is modulated by a novel cis-acting DNA element (centromere enhancer) within the functionally critical K centromeric repeat, which is found in multiple copies in all three S. pombe centromeres. The centromere enhancer alters central core chromatin structure from a distance and in an orientation-independent manner without altering the nucleosomal packaging of sequences between the enhancer and the central core. These findings suggest a functionally relevant structural interaction between the enhancer and the centromeric central core brought about by DNA looping.  相似文献   

7.
S. pombe centromeres are large and complex. We introduced a method that enables us to characterize directly centromere DNAs. Genomic DNA fragments containing cen1, cen2, or cen3, respectively, are made by cleaving NotI sites integrated on target sites and are partially restricted for long-range mapping in PFG electrophoresis. The 40 kb long cen1 consists of two inverted approximately 10 kb motifs, each containing centromeric elements dg and dh, flanked by a central region. In cen2, three motifs are arranged in inverted and direct orientations with flanking domains, making up the approximately 70 kb long repetitious region. In cen3, approximately 15 copies of dg-dh constitute a region longer than 100 kb. A set of inverted motifs with an approximately 15 kb central region might be a prototype for the S. pombe centromeres. The motifs appear to play a role in chromosome stability and segregation. Their action may be additive, and the mutual directions of dg and dh inside a motif may not be essential for function.  相似文献   

8.
Centromeres of budding and fission yeasts   总被引:39,自引:0,他引:39  
Centromeres of the budding yeast Saccharomyces cerevisiae are structurally relatively simple, are specified by only about 125 base pairs of DNA, and contain no repeated DNA sequences. The centromere regions in the fission yeast Schizosaccharomyces pombe span many kilobase pairs of DNA and contain repeated DNA sequences that appear to be necessary for full centromere function. A portion of the repeated sequences is organized into a large inverted repeated structure in the centromere region of each S. pombe chromosome. Fission yeast provides an excellent model system for studying the role of repeated DNA sequences in centromere function.  相似文献   

9.
Centromeric DNA in the fission yeast Schizosaccharomyces pombe was isolated by chromosome walking and by field inversion gel electrophoretic fractionation of large genomic DNA restriction fragments. The centromere regions of the three chromosomes were contained on three SalI fragments (120 kilobases [kb], chromosome III; 90 kb, chromosome II; and 50 kb, chromosome I). Each fragment contained several repetitive DNA sequences, including repeat K (6.4 kb), repeat L (6.0 kb), and repeat B, that occurred only in the three centromere regions. On chromosome II, these repeats were organized into a 35-kb inverted repeat that included one copy of K and L in each arm of the repeat. Site-directed integration of a plasmid containing the yeast LEU2 gene into K repeats at each of the centromeres or integration of an intact K repeat into a chromosome arm had no effect on mitotic or meiotic centromere function. The centromeric repeat sequences were not transcribed and possessed many of the properties of constitutive heterochromatin. Thus, S. pombe is an excellent model system for studies on the role of repetitive sequence elements in centromere function.  相似文献   

10.
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (K(s) = 7 x 10(9) M(-1)) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Deltaabp1 Deltacbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.  相似文献   

11.
A 530 kb long Schizosaccharomyces pombe linear minichromosome, Ch16, containing a centric region of chromosome III, has previously been made. In the present study, we constructed a number of deletions in the right and/or left arms of Ch16, and compared their structure and behaviour with Ch16. The functional centromere, cen3, is allocated within a 120 kb long region which is covered by the shortest derivative, Ch10, and is comprised mostly of centromeric repeating sequences. The shortest minichromosome is stable in mitosis and the copy number control is apparently precise. In monosomic meiosis it segregates normally. In disomic meioses, however, the frequency of non-disjunction is very high, suggesting that it may not form a pair. The mitotic loss rate of one of the left-arm deletions, ChR32, which lacks a part of the centromeric repeating sequence, is the highest of all the deletions. This deletion also exhibits the highest precocious sister chromatid separation in meiosis I, suggesting that sister chromatid association might become weakened in ChR32. Our results indicate that the proper meiotic segregation of S.pombe minichromosomes is dependent upon the formation of a bivalent. S.pombe may not have the 'distributive segregation' found with Saccharomyces cerevisiae minichromosomes.  相似文献   

12.
Irelan JT  Gutkin GI  Clarke L 《Genetics》2001,157(3):1191-1203
Several members of protein families that are conserved in higher eukaryotes are known to play a role in centromere function in the fission yeast Schizosaccharomyces pombe, including two homologs of the mammalian centromere protein CENP-B, Abp1p and Cbh1p. Here we characterize a third S. pombe CENP-B homolog, Cbh2p (CENP-B homolog 2). cbh2Delta strains exhibited a modest elevation in minichromosome loss, similar to cbh1Delta or abp1Delta strains. cbh2Delta cbh1Delta strains showed little difference in growth or minichromosome loss rate when compared to single deletion strains. In contrast, cbh2Delta abp1Delta strains displayed dramatic morphological and chromosome segregation defects, as well as enhancement of the slow-growth phenotype of abp1Delta strains, indicating partial functional redundancy between these proteins. Both cbh2Delta abp1Delta and cbh1Delta abp1Delta strains also showed strongly enhanced sensitivity to a microtubule-destabilizing drug, consistent with a mitotic function for these proteins. Cbh2p was localized to the central core and core-associated repeat regions of centromeric heterochromatin, but not at several other centromeric and arm locations tested. Thus, like its mammalian counterpart, Cbh2p appeared to be localized exclusively to a portion of centromeric heterochromatin. In contrast, Abp1p was detected in both centromeric heterochromatin and in chromatin at two of three replication origins tested. Cbh2p and Abp1p homodimerized in the budding yeast two-hybrid assay, but did not interact with each other. These results suggest that indirect cooperation between different CENP-B-like DNA binding proteins with partially overlapping chromatin distributions helps to establish a functional centromere.  相似文献   

13.
Centromere structure and function in budding and fission yeasts   总被引:16,自引:0,他引:16  
  相似文献   

14.
15.
By cloning centromere-linked genes followed by partial overlapping hybridization, we constructed a 210-kb map encompassing the centromere in chromosome II and a 60-kp map near the centromere of chromosome I in the fission yeast Schizosaccharomyces pombe which has three chromosomes. Integration of the cloned sequences into the chromosome and subsequent analyses of tetrads and dyads revealed an approximately 50 kb long domain located in the middle of the 210-kb map, tightly linked to the centromere and greatly reduced in meiotic recombination. This domain contained at least two classes of repetitive sequences. One, designated yn1, was specifically present in a particular chromosome and repeated three times in the 210-kb map of chromosome II. The other, designated dg, was located in all the centromere regions of three chromosomes. One (dgI) and two (dgIIa, dgIIb) copies of the dg were found in the maps of chromosomes I and II, respectively. The dgIIa and dgIIb were arranged with a 20-kb interval within the repetitive domain. In the centric region of chromosome II, 3-4 copies of the dg appeared to exist. By determining the nucleotide sequences of dgI and dgIIa, the dg was identified to be 3.8 kb long. The sequence homology was 99% between dgI and dgIIa. These extraordinarily homologous sequences seemed not to be transcribed into RNA nor to be encoding any protein. The larger part of the dg sequence was internally non-repetitious, a 600-bp region existed which consisted of stretches of several short repeating units. The structures in or surrounding the centromeres of S. pombe appear to be much more complex than those of the budding yeast Saccharomyces cerevisiae.  相似文献   

16.
We determined the structure of the Schizosaccharomyces pombe centromere cen3 using direct genomic mapping and cosmid walking. The repetitive region of cen3 is approximately 110 kb, much longer than that of the previously determined cen1 and cen2 regions. The 30 kb long left and 60 kb right repetitive sequences are arranged with an inverted symmetry and flank the 1520 kb central domain. The repeat motifs in cen3, although they consist of the common centromeric repeat elements, are slightly different from those in cen1 and cen2. The cen3 repeat motifs appear to be reiterated four times in the left and nine times in the right side repetitive regions. We found that the central domain consists of the common 5 kb core sequence associated with the pair of innermost inverted sequences, most of which are reiterated only twice in the genome. Although their sizes differ significantly, the general features of cen1, cen2 and cen3 are similar, and a prototype, consensus structure for the fission yeast centromere may be deduced.by J.A. Huberman  相似文献   

17.
The centromeric region of swine chromosomes is comprised of tandemly repeated, divergent DNA monomer units. Here we report that these divergent DNA monomer sequences are organized into higher-order repeats, analogous to the hierarchical organization of α-satellite monomers in human centromeres. In this study, a centromeric cosmid clone was shown to be comprised entirely of a 3.3-kb higher-order repeat, with independent copies of this higher-order repeat more than 99% identical to each other. This higher-order repeat is composed of ten divergent monomer units of approximately 340 bp. The ten monomers are on average 79% identical, and all ten monomers are arranged in the same 5′ to 3′ orientation. In FISH analysis, a cloned 3.3-kb higher-order repeat hybridized to the centromere of Chromosome (Chr) 9 in metaphase spreads and detected two discrete foci in interphase nuclei, demonstrating that this swine higher-order repeat is chromosome-specific. The Chr 9 centromeric array spanned approximately 2.2 Mb as determined by pulsed-field gel electrophoresis. Moreover, the swine Chr 9 centromere is highly polymorphic, because an EcoRI restriction site polymorphism was detected. Thus, the assembly of divergent satellite sequences into chromosome-specific higher-order repeats appears to be a common organizational feature of both the human and swine centromere and suggests that the evolutionary mechanism(s) that create and maintain higher-order repeats is conserved between their genomes. Received: 6 August 1998 / Accepted: 20 January 1999  相似文献   

18.
We have constructed circular minichromosomes, ranging in size from 36 to 110 kb, containing the centromeric repeats of Schizosaccharomyces pombe cen3. Comparison of their mitotic stability showed that the circular minichromosomes became more unstable with increasing in size, however, a linear cen3 minichromosome, which is almost the same size as the largest circular one tested, does not show such instability. High levels of expression of the top2 + (type II DNA topoisomerase; topo II) but not top1 + gene (type I DNA topoisomerase) suppressed the instability of the largest circular minichromosome, whereas partial inactivation of topo II dramatically destabilized the minichromosome. A mutant topo II, defective in nuclear localization but still retaining its in vitro relaxation activity, did not stabilize the circular minichromosome. These results indicate that endogenous type II DNA topoisomerase is insufficient for accurate segregation of the circular minichromosome. In addition, the replication of the minichromosomal DNA appears to proceed normally, because the presence of the unstable minichromosome did not cause G2 delay. A likely cause of the instability is intertwining of the minichromosome DNA possibly occuring after DNA replication. An interaction between topo II and the centromeric repeats is implied by the finding that multiple copies of the centromeric repeat, dg-dh, affect stability of the minichromosome similarly to top2 + gene dosage.  相似文献   

19.
We have constructed circular minichromosomes, ranging in size from 36 to 110 kb, containing the centromeric repeats of Schizosaccharomyces pombe cen3. Comparison of their mitotic stability showed that the circular minichromosomes became more unstable with increasing in size, however, a linear cen3 minichromosome, which is almost the same size as the largest circular one tested, does not show such instability. High levels of expression of the top2 + (type II DNA topoisomerase; topo II) but not top1 + gene (type I DNA topoisomerase) suppressed the instability of the largest circular minichromosome, whereas partial inactivation of topo II dramatically destabilized the minichromosome. A mutant topo II, defective in nuclear localization but still retaining its in vitro relaxation activity, did not stabilize the circular minichromosome. These results indicate that endogenous type II DNA topoisomerase is insufficient for accurate segregation of the circular minichromosome. In addition, the replication of the minichromosomal DNA appears to proceed normally, because the presence of the unstable minichromosome did not cause G2 delay. A likely cause of the instability is intertwining of the minichromosome DNA possibly occuring after DNA replication. An interaction between topo II and the centromeric repeats is implied by the finding that multiple copies of the centromeric repeat, dg-dh, affect stability of the minichromosome similarly to top2 + gene dosage.  相似文献   

20.
Intercellular transfer of plasmid DNA during bacterial conjugation initiates and terminates at a specific origin of transfer, oriT. We have investigated the oriT structure of conjugative plasmid R64 with regard to the initiation and termination of DNA transfer. Using recombinant plasmids containing two tandemly repeated R64 oriT sequences with or without mutations, the subregions required for initiation and termination were determined by examining conjugation-mediated deletion between the repeated oriTs. The oriT subregion required for initiation was found to be identical to the 44-bp oriT core sequence consisting of two units, the conserved nick region sequence and the 17-bp repeat A sequence, that are recognized by R64 relaxosome proteins NikB and NikA, respectively. In contrast, the nick region sequence and two sets of inverted repeat sequences within the 92-bp minimal oriT sequence were required for efficient termination. Mutant repeat A sequences lacking NikA-binding ability were found to be sufficient for termination, suggesting that the inverted repeat structures are involved in the termination process. A duplication of the DNA segment between the repeated oriTs was also found after mobilization of the plasmid carrying initiation-deficient but termination-proficient oriT and initiation-proficient but termination-deficient oriT, suggesting that the 3' terminus of the transferred strand is elongated by rolling-circle-DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号