首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predation pressure may affect many aspects of prey behavior, including forming groups and changes in social interactions. We studied the aggregation behavior of competing gammarids Dikerogammarus villosus and Pontogammarus robustoides (Amphipoda, Crustacea) to check whether they modify their preferences for conspecifics or heterospecifics in response to predator (the racer goby Babka gymnotrachelus) kairomones in the presence or absence of stone shelters (alternative protection source). Both species exhibited preferences toward shelters occupied by conspecifics over empty shelters and conspecifics apart from shelters, suggesting that their aggregation depends not only on habitat heterogeneity, but also on their social interactions. Moreover, gammarids in the presence of shelters (safer conditions) preferred conspecifics over heterospecifics, but predator kairomones made them form aggregations irrespective of species. In the predator presence, P. robustoides increased its aggregation level only in the sheltered conditions, whereas D. villosus exhibited this response only in the absence of shelters, suggesting that this behavior can protect it against predators. Therefore, we tested the antipredator effectiveness of D. villosus aggregations by exposing them to fish predation. Gobies foraged most effectively on immobile single gammarids compared to moving and aggregated individuals. Fish also avoided aggregated prey, confirming the protective character of aggregations. We have demonstrated that the predator presence increases aggregation level of prey gammarids and affects their social behavior by reducing antagonistic interactions and avoidance between competing species. This is likely to affect their distribution and functioning in the wild, where predator pressure is a standard situation.  相似文献   

2.
3.
This study explores: (1) whether the abundance of macroinvertebrates differs between macrophytes differing in both morphological complexity and tolerance to nutrient enrichment; (2) whether the distribution of invertebrates between macrophytes is due to active habitat choice; and (3) whether invertebrates prefer structurally complex to simple macrophytes. Macroinvertebrate abundance was compared between two common soft-bottom plants of the Baltic Sea that are tolerant to eutrophication, Myriophyllum spicatum and Potamogeton pectinatus, and one common plant that is sensitive to eutrophication, Chara baltica. Both field sampling and habitat choice experiments were conducted. We recorded higher total macroinvertebrate abundance on the structurally complex M. spicatum than on the more simply structured P. pectinatus and C. baltica, but found no difference in macroinvertebrate abundance between P. pectinatus and C. baltica. In accordance with the field results, our experiment indicated that the crustacean Gammarus oceanicus actively chose M. spicatum over the other macrophytes. Besides, we found that G. oceanicus actively preferred complex to simply structured artificial plants, indicating that the animal distribution was at least partly driven by differences in morphological complexity between plant species. In contrast, the gastropod Theodoxus fluviatilis did not make an active habitat choice between the plants. Our findings suggest that human-induced changes in vegetation composition can affect the faunal community. Increased abundance of structurally complex macrophytes, for example, M. spicatum, can result in increased abundance of macroinvertebrates, particularly mobile arthropods that may actively choose a more structurally complex macrophyte.  相似文献   

4.
Colonisation by stream plants occurs to a large extent from simple stem fragments. Allofragments are stem fragments formed by mechanical breakage. We studied regeneration, colonisation, and growth rates in four common stream plants: Elodea canadensis Michx., Myriophyllum spicatum L., Potamogeton perfoliatus L. and Ranunculus baudotii x pseudofluitans. The objectives of this study were to determine (1) if shoots with an apical tip have higher regeneration (growth of new shoots and rhizomes from allofragments) and colonisation (root attachment in sediment) abilities and higher relative growth rates (RGR) than shoots without an apical tip, and (2) if fragment size correlates with regeneration and colonisation abilities and with RGR of fragments. For all species, over 60% of fragments regenerated new shoots and colonised. Apical shoots and larger fragments generally had higher regeneration and colonisation abilities and higher RGR. Relative growth rate for E. canadensis and M. spicatum was between 0.06 and 0.09 d−1 whereas it was about half this rate for Ranunculus and P. perfoliatus (0.02–0.04 d−1).  相似文献   

5.
Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known about how the replacement of native by non-native vegetation affects predator-prey dynamics. We hypothesize that plant refuge provisioning depends on (1) the plant’s native status, (2) plant structural complexity and morphology, (3) predator identity, and (4) prey identity, as well as that (5) structurally similar living and artificial plants provide similar refuge. We used aquatic communities as a model system and compared the refuge provided by plants to macroinvertebrates (Daphnia pulex, Gammarus pulex and damselfly larvae) in three short-term laboratory predation experiments. Plant refuge provisioning differed between plant species, but was generally similar for native (Myriophyllum spicatum, Ceratophyllum demersum, Potamogeton perfoliatus) and non-native plants (Vallisneria spiralis, Myriophyllum heterophyllum, Cabomba caroliniana). However, plant refuge provisioning to macroinvertebrate prey depended primarily on predator (mirror carp: Cyprinus carpio carpio and dragonfly larvae: Anax imperator) and prey identity, while the effects of plant structural complexity were only minor. Contrary to living plants, artificial plant analogues did improve prey survival, particularly with increasing structural complexity and shoot density. As such, plant rigidity, which was high for artificial plants and one of the living plant species evaluated in this study (Ceratophyllum demersum), may interact with structural complexity to play a key role in refuge provisioning to specific prey (Gammarus pulex). Our results demonstrate that replacement of native by structurally similar non-native vegetation is unlikely to greatly affect predator-prey dynamics. We propose that modification of predator-prey interactions through plant invasions only occurs when invading plants radically differ in growth form, density and rigidity compared to native plants.  相似文献   

6.
The adult populations of three Pieris butterflies, P. rapae, P. melete and P. napi, were studied in an area of their coexistence throughout the flight seasons by using the mark-and-recapture method. The study area, about 3×1.5 km, was set up in a farm village surrounded by the mountainous area in Inabu, Aichi Prefecture. The habitats were qualified by the four factors, i. e., oviposition plants, adult nector plants, roosting-sites and light conditions. Between P. rapae and P. napi, there were sharp differences with regards to overall habitat preferences. P. melete had the widest preferences for all the habitat resources, which overlapped greately with requirements of P. rapae and P. napi. P. melete and P. rapae showed similar preferences for oviposition plants, but the former preferred shaded habitats while the latter preferred sunny places. P. melete and P. napi, having similar preferences for shaded situations, showed differences in the preferences for oviposition plants. Moreover, three species of Pieris were different in their preferences for adult nector plants. Thus, they were more likely to partition habitat resources rather than competing for them. The habitat structures of each species in respect of time, space and stability to weather changes were much different each other in the same area. The habitat of P. rapae was temporary, localized and unstable. While, that of P. melete was more permanent, widespread and stable than that of P. rapae. P. napi seemed to live in the intermediate habitat, i. e., permanent, localized and stable one.  相似文献   

7.
Biological invasions cause organisms to face new predators, but also supply new anti-predator shelters provided by alien ecosystem engineers. We checked the level of anti-predator protection provided to three gammarid species by an invasive Ponto-Caspian zebra mussel Dreissena polymorpha, known for its habitat modification abilities. We used gammarids differing in their origin and level of association with mussels: Ponto-Caspian aliens Dikerogammarus villosus (commonly occurring in mussel beds) and Pontogammarus robustoides (not associated with mussels), as well as native European Gammarus fossarum (not co-occurring with dreissenids). The gammarids were exposed to predation of two fish species: the racer goby Babka gymnotrachelus (Ponto-Caspian) and Amur sleeper Perccottus glenii (Eastern Asian). This set of organisms allowed us to check whether the origin and level of association with mussels of both prey and predators affect the ability of gammarids to utilize zebra mussel beds as shelters. We tested gammarid survival in the presence of fish and one of five substrata: sand, macrophytes, stones, living mussels and empty mussel valves. D. villosus survived better than its congeners on all substrata, and its survival was highest in living dreissenids. The survival of the other gammarids was similar on all substrata. Both fish species exhibited similar predation efficiency. Thus, D. villosus, whose affinity to dreissenids has already been established, utilizes them as protection from fish predators, including allopatric predators, more efficiently than other amphipods. Therefore, the presence of dreissenids in areas invaded by D. villosus is likely to help the invader establish itself in a new place.  相似文献   

8.
The aim of this study was to determine and compare habitat preferences for male and female adult and juvenile White's seahorse Hippocampus whitei and assess their movements and site fidelity over 4 years. Data were collected from three sites along 1·5 km of estuarine shoreline in Port Stephens, New South Wales, Australia, from 2006 to 2009 using H. whitei that had been tagged with visible implant fluorescent elastomer. Relative availability of 12 habitats and habitat preferences of H. whitei was determined, based on the habitat that H. whitei used as a holdfast. Hippocampus whitei occurred in nine different habitats; adults preferred sponge and soft coral Dendronephthya australis habitats with no difference between male and female habitat preferences whilst juveniles preferred gorgonian Euplexaura sp. habitat. There was a significant preference by adults for D. australis colonies with height >40 cm and avoidance of colonies <20 cm. Neither adults nor juveniles used sand or the seagrasses Zostera muelleri subsp. capricorni and Halophila ovalis. Hippocampus whitei showed cryptic behaviour with c. 50% of adult sightings cryptic and c. 75% for juveniles with crypsis occurring predominantly in Sargassum sp. for adults and Euplexaura sp. habitat for juveniles. Within sites, females moved significantly longer distances (maximum of 70 m) than males (maximum of 38 m) over 20 months. Strong site fidelity was displayed by H. whitei with males persisting at the same site for up to 56 months and females for 49 months and no H. whitei moved between sites. The longest period that an H. whitei was recorded on the same holdfast was 17 months for a male and 10 months for a female. As this species displays strong site fidelity, specific habitat preferences and has a limited distribution, future management needs to minimize the risk of habitat disturbance as loss of key habitats could have a negative effect on species abundance and distribution.  相似文献   

9.
The Dry Matter Content (DMC), the total phenolic content, the production of new branches and the plant fragmentation were compared in three macrophyte species (Elodea canadensis, Elodea nuttallii and Myriophyllum spicatum) exposed or not to snail herbivory. Grazing significantly reduced the DMC of M. spicatum and E. canadensis, but had no effect on the DMC of E. nuttallii. The phenolic contents of Elodea species were not modified by snail herbivory, whereas that of M. spicatum significantly increased when exposed to grazers. The number of new branches produced by M. spicatum and E. canadensis plants, and the fragmentation of E. canadensis also increased in response to herbivory. Chemical defences are therefore probably constitutive in Elodea and induced in M. spicatum, and morphological changes can be related to species growth form and synthesis of phenolic compounds. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The dynamics of microhabitat use by foraging adult and juvenile black surfperch (Embiotocajacksoni Agazzi) were explored. Detailed observations of black surfperch feeding at Santa Catalina Island, California, revealed that adults and young-of-year juveniles co-occurred in the same habitat but used different algal substrata as foraging sites. Juveniles selected invertebrate prey almost exclusively from the surface of foliose algae. The occurrence of young E. jacksoni was highly correlated with that of foliose algae. Adults tended to bite most frequently from turf, a low-growing matrix of plants, colonial animals, and debris covering the rocky substratum. The abundance of adults was negatively correlated with the occurrence of foliose algae. Adults and juveniles showed marked, but different, preferences in their utilization of taxa of algae as foraging substrata. Certain algae (e.g., Zonaria farlowii Setchell & Gardner) were preferred while other taxa (e.g., Sargassum palmeri Grun) were avoided by both age groups. However, most types of algae were preferred by one group but not the other. To test the hypothesis that knowledge of algal substratum composition allows prediction of fish occurrence and foraging behavior in a patch, algal cover on 2 × 2 m2 areas of bottom was manipulated creating plots dominated by turf, Zonaria farlowii, or Sargassum palmeri. Fish occurrence could be accurately predicted on the basis of abundance of foliose algae, but foraging activity of fish was highly dependent on the algal taxon that dominated the patch. Differential prey availabilities among foraging substrata provided some insight into the patterns of foraging patch preferences displayed by adult and juvenile Embiotoca jacksoni.  相似文献   

11.
Industrial wastewaters contain various heavy metal components and therefore threaten aquatic bodies. Heavy metals can be adsorbed by living or non‐living biomass. Submerged aquatic plants can be used for the removal of heavy metals. This paper exhibits the comparison of the adsorption properties of two aquatic plants Myriophyllum spicatum and Ceratophyllum demersum for lead, zinc, and copper. The data obtained from batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (qmax) were obtained for both plant species and each metal. The maximum adsorption capacities (qmax) achieved with M. spicatum were 10.37 mg/g for Cu2+, and 15.59 mg/g for Zn2+ as well as 46.49 mg/g for Pb2+ and with C. demersum they were 6.17 mg/g for Cu2+, 13.98 mg/g for Zn2+ and 44.8 mg/g for Pb2+. It was found that M. spicatum has a better adsorption capacity than C. demersum for each metal tested. Gibbs free energy and the specific surface area based on the qmax values were also determined for each metal.  相似文献   

12.
Degradation of instream habitats in the northern Murray–Darling Basin has occurred through numerous stressors, including siltation, clearing of bankside vegetation, intrusion of livestock and impacts of pest species. A better understanding of habitat preferences of native fish species could help guide future instream habitat restoration actions. The habitat choices of seven native fish species, juvenile Murray Cod (Maccullochella peelii), juvenile Golden Perch (Macquaria ambigua ambigua), juvenile Silver Perch (Bidyanus bidyanus), adult Murray–Darling Rainbowfish (Melanotaenia fluviatilis), adult Olive Perchlet (Ambassis agassizii), adult Un‐specked Hardyhead (Craterocephalus stercusmuscarum fulvus) and adult carp gudgeons (Hypseleotris spp.) were tested in preference troughs to help inform potential habitat restoration actions in the Condamine catchment. Each species was given a choice between pair combinations of open sandy habitat, submerged macrophytes, emergent plants and rocky rubble. Habitat preferences varied between species. Murray Cod, Golden Perch, carp gudgeons and Olive Perchlets preferred structure over open sandy habitat, whilst juvenile Silver Perch, Un‐specked Hardyhead and Murray–Darling Rainbowfish did not avoid open sandy habitats. Juvenile Murray Cod preferred rocky rubble habitat over all other habitat choices. Use of complex rock piles to provide nursery habitat for Murray Cod populations is a potential restoration option. Introduction of rock could also benefit Golden Perch and carp gudgeons. Use of emergent plants, submerged macrophytes and rocky rubble for habitat restoration all appear to have merit for one or more species of small‐bodied fishes or juvenile stages of larger sized fishes. Rocky rubble or floating attached macrophytes could be viable restoration options in areas too turbid to establish submerged macrophytes. These habitat interventions would complement existing actions such as re‐snagging and provision of fish passage to assist with sustainable management of native fish populations.  相似文献   

13.
Ponto-Caspian gammarids have invaded European waters, affecting local communities by predation and competition. Their ranges and dispersal rates vary across Europe, which may result from their interspecific interactions, accelerating or reducing migrations. We checked this hypothesis by testing interference competition among co-occurring invaders: Dikerogammarus villosus, D. haemobaphes and Pontogammarus robustoides. We used 140-cm long tanks (gravel substratum), divided into seven compartments. We introduced 25 “residents” into the outermost compartment, separated with a barrier. After 1 h, we introduced 25 “intruders”. After the next 1 h, we removed the barrier and the gammarids dispersed in the tank. After 4 or 20 h, we counted the gammarids in the compartments. We tested all pairwise species combinations and single-species controls. Dikerogammarus villosus displaced other species (P. robustoides only after 4 h) and reduced its own motility after 20 h in their presence. Pontogammarus robustoides stimulated the short-time migrations of D. villosus intruders and of D. haemobaphes. As P. robustoides migrated spontaneously much more than Dikerogammarus spp., its impact decreased after longer time. Dikerogammarus haemobaphes stimulated the short-time movement of P. robustoides intruders but reduced the long-time relocation of this species. In general, gammarid dispersal increased in the presence of stronger competitors (D. villosus and P. robustoides, especially residents) and decreased in response to weaker competitors (D. haemobaphes). Thus, competitive interactions may affect dispersal of invasive gammarids and contribute to the fastest spread of the weakest competitor, D. haemobaphes observed in the field, whereas the strongest species, D. villosus was the latest newcomer in many novel areas.  相似文献   

14.
A comparative analysis of submerged Potametea communities in lakes of north-eastern Poland was conducted with respect to 16 water chemistry and 14 substrate parameters. The analysis of 187 relevés based on TWINSPAN clustering showed the existence of 8 aquatic vegetation types. Each of them is characterized by a strong dominance of one of the following macrophytes: Potamogeton lucens, P. perfoliatus, Myriophyllum spicatum, M. verticillatum, Elodea canadensis, Ceratophyllum demersum, Ranunculus circinatus and Hydrilla verticillata. The above vegetation types correspond to the plant associations distinguished using the Braun-Blanquet method (Potametum lucentis, Potametum perfoliati, Myriophylletum spicati etc.) It was demonstrated that among properties of water analysed, COD-KMnO4, SO42−, pH, Na+, K+, Ca2+, total hardness, total Fe, Cl and colour appear to be most important in differentiating the habitats of the communities studied. In the case of substrates the properties which best differentiated the habitats compared were hydration, organic matter content, total N, PO43−, K+, dissolved SiO2, SO42−, Cl and pH. Most of the aquatic plant communities investigated are distinct with respect to their phytocoenotic structure and ecology and could be good indicators of various types of habitats in lake ecosystems.  相似文献   

15.
Spatial distributions of coral reef fish species are potentially determined by habitat preferences and behavioural interactions. However, the relative importance of these factors and whether or not behavioural interactions reinforce or disrupt habitat associations are poorly understood. This paper explores the degree to which habitat and social preferences explain the association that three common coral reef cardinalfish species (Zoramia leptacanthus, Archamia zosterophora and Cheilodipterus quinquelineatus; family Apogonidae) have with coral substrata at Lizard Island, Great Barrier Reef. At diurnal resting sites, species were strongly associated with branching corals, with 80–90% of each species inhabiting one branching coral species, Porites cylindrica. Species were also highly gregarious, forming large con-specific and hetero-specific aggregations in coral heads, potentially reinforcing habitat associations. Three-way choice experiments were conducted to test fishes habitat preferences for living coral over dead substrata, for particular coral species, and the influence of gregarious behaviour on these habitat choices. The strength of habitat preferences differed among species, with Z. leptacanthus preferring live coral and P. cylindrica, A. zosterophora preferring P. cylindrica, whether live or dead and C. quinquelineatus exhibiting no preferences. All species were attracted to conspecifics, and for C. quinquelineatus and A. zosterophora, conspecific attraction resulted in stronger preferences for live corals. Gregarious behaviour also increased C. quinquelineatus associations with P. cylindrica. The relative strength of social attraction versus habitat preferences was investigated by comparing fish habitat preferences in the presence and/or absence of conspecifics. The presence of conspecifics on non-preferred rubble habitat reduced each species association with live coral. This study’s results indicate that in the field, habitat preferences and conspecific attraction combine to reinforce the association between cardinalfishes and a narrow range of coral substrata.  相似文献   

16.
1. Biological invasions are regarded as one of the greatest threats to biological diversity. One of the macroinvertebrate groups with the largest number of invasive species in fresh water are gammarid amphipods. Their omnivorous (including predatory) feeding behaviour may facilitate their spread and establishment in new areas. 2. Dikerogammarus villosus, the ‘killer shrimp’, is a well‐known example of a Ponto‐Caspian gammarid that is a very effective predator and successful coloniser in Europe. There are, however, other invasive Ponto‐Caspian amphipods, which have spread successfully in Northern, Central and Western Europe. Our aim here was to test whether two of such invaders (Pontogammarus robustoides and Dikerogammarus haemobaphes) are also more predacious than a native species (Gammarus fossarum). 3. Stable isotope analysis (δ15N and δ13C) of Ponto‐Caspian amphipods coexisting in a reservoir demonstrated that the trophic positions of P. robustoides and D. haemobaphes were similar to that of D. villosus. Echinogammarus ischnus and Chelicorophium curvispinum occupied the lowest position in the food web, while the native Gammarus fossarum (collected from another waterbody) had an intermediate trophic position. 4. Stomach content analysis of P. robustoides, D. haemobaphes and G. fossarum collected in the field, as well as laboratory feeding experiments, was used to compare diet and feeding preferences among the two invasive and one native species. All three species were omnivorous and predacious. However, the two invasive species (P. robustoides and D. haemobaphes) were more effective predators than G. fossarum and showed a clear preference for animal prey and tissue. 5. Pontogammarus robustoides and D. haemobaphes may, like D. villosus, also be called ‘killer shrimps’ and could have a similar impact as invaders of European freshwater and brackish waterbodies.  相似文献   

17.
Populations of common submerged vascular plants were established in a series of 18 experimental ponds in 1967 and subjected to a replicated inorganic N-P fertilization program. The 18 ponds were fertilized as follows in 1968: 6 unfertilized controls, 6 low fertility (.75 mg. P/1) and 6 high fertility (75 mg. N/1., 7·5 mg. P/1.). The high fertility levels tended to eliminate the benthic plant populations and increase the phytoplankton standing crops. Elodea canadensis grew in the highest nutrient levels but Myriophyllum spicatum var. exalbescens and Ceratophyllum demersum appeared to be eliminated. Potamogeton crispus produced an abundance of winter buds under conditions of high fertility. There were no obvious differences in the benthic plant and phytoplankton populations among the control and low fertility ponds.Supported by funds from OWRR Title II Matching Grant and the College of Agriculture at Cornell University.  相似文献   

18.
Corallivorous gastropods of the genus Drupella are known for population outbreaks throughout the Indo-Pacific region. Despite their potential to destroy wide areas of coral reef, prey preferences have never been analyzed with respect to prey availability, and juvenile ecology and food selectivity remain largely unknown. Here, the influence of water depth, coral abundance, colony shape, prey species, and intraspecific attraction among snails on distribution patterns, prey selection, and microhabitat use of D. cornus was studied in the northern Red Sea. Special emphasis was put on ontogenetic differences. The snails were most abundant in the shallowest reef zone (1 m depth). Adults were associated with several substrates and coral growth forms, whereas juveniles were highly cryptic and restricted to live branching corals. The genus Acropora was significantly preferred over other acroporid and pocilloporid corals. As revealed by resource selection ratios, Acropora acuminata was preferred by juveniles, A. selago by adults. In aquarium experiments, intraspecific attraction was high among both life stages. Overall, significant differences in juvenile and adult microhabitat and prey use suggest that juveniles have more specific habitat requirements, and indicate ecological impacts on coral communities different from that of adults. Prey preferences seem to depend on both coral genus and colony shape. Acropora corals provide the best combination of food and shelter and therefore determine distribution patterns of D. cornus.  相似文献   

19.
Habitat partitioning in riverine macrophyte communities   总被引:4,自引:0,他引:4  
1. Habitat partitioning has been extensively studied in terrestrial plant communities. By comparison, few studies have examined habitat partitioning in riverine macrophyte communities. Riverine environments are often highly heterogeneous with respect to current speed, depth, bottom sediment fertility and other biologically important properties. Thus, the potential for habitat partitioning in riverine macrophyte communities is great. 2. The objective of this study was to investigate how, or if, macrophyte species are differentially distributed with respect to abiotic gradients in a large river in central British Columbia, Canada. 3. A survey of macrophyte biomass and associated measures of current speed, depth and sediment texture showed that coexistence occurred both with and without habitat partitioning. 4. Coexistence in the absence of habitat partitioning was depicted by Potamogeton gramineus, Potamogeton berchtoldii, Myriophyllum exalbescens, Callitriche hermaphroditica and Potamogeton pectinatus such that they had a minimum and average niche overlap (NO) of 65% and 84%, respectively, for all measured abiotic variables. Similarly, the spatial niche of E. canadensis was close to that of Ceratophyllum demersum and M. exalbescens. 5. While several taxa seemed to occupy the same spatial niche, some taxa were distinguished from one another in terms of the types of microhabitats they utilized. Mosses, for example, were often the only occupants of sites having current speeds greater than 0.6 m s–1 and substrates of bare rock. Ranunculus aquatilis was most abundant at sites having current speeds between 0.4 and 0.6 m s–1 whereas most other taxa were restricted to slower waters. Habitat partitioning across depth contours, which occurred between several taxa, was most evident between P. pectinatus and C. demersum (NO = 17%), C. hermaphroditica and C. demersum (NO = 3%), C. demersum and P. richardsonii (NO = 19%) and C. hermaphroditica and E. canadensis (NO = 29%).  相似文献   

20.
Submersed aquatic plants have a key role in maintaining functioning aquatic ecosystems through their effects on the hydrological regime, sedimentation, nutrient cycling and habitat of associated fauna. Modifications of aquatic plant communities, for example through the introduction of invasive species, can alter these functions. In the Sacramento-San Joaquin River Delta, California, a major invasive submersed plant, Brazilian waterweed Egeria densa, has become widespread and greatly affected the functionality of the submersed aquatic plant community. Rapid assessments of the distribution and abundance of this species are therefore crucial to direct management actions early in the season. Given the E. densa bimodal growth pattern (late spring and fall growth peaks), summer assessments of this species may indicate which and where other submersed species may occur and fall assessments may indicate where this and other species may occur in the following spring, primarily because the Delta’s winter water temperatures are usually insufficient to kill submersed aquatic plant species. We assessed community composition and distribution in the fall of 2007 and summer of 2008 using geostatistical analysis; and measured summer biomass, temperature, pH, salinity, and turbidity. In the fall of 2007, submersed aquatic plants covered a much higher proportion of the waterways (60.7%) than in the summer of 2008 (37.4%), with a significant overlap between the seasonal distribution of native and non-native species. Most patches were monospecific, and multispecies patches had significantly higher dominance by E. densa, co-occurring especially with Ceratophyllum demersum. As species richness of non-natives increased there was a significant decrease in richness of natives, and of native biomass. Sustained E. densa summer biomass negatively affected the likelihood of presence of Myriophyllum spicatum, Potamogeton crispus, and Elodea canadensis but not their biomass within patches. Depth, temperature and salinity were associated with biomass; however, the direction of the effect was species specific. Our results suggest that despite native and invasive non-native submersed plant species sharing available niches in the Delta, E. densa affects aquatic plant community structure and composition by facilitating persistence of some species and reducing the likelihood of establishment of other species. Successful management of this species may therefore facilitate shifts in existing non-native or native plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号