首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.  相似文献   

2.
Tsai NP  Ho PC  Wei LN 《The EMBO journal》2008,27(5):715-726
Cells form stress granules (SGs) in response to environmental stresses, which constitute cytoplasmic domains where mRNAs are stored and translation is halted. Although several components are found in SGs, it is poorly understood as to how SGs are formed and dissolved. We identified growth factor receptor-bound protein 7 (Grb7), an RNA-binding, translational regulator, as an integral component of SGs, which directly interacts with Hu antigen R (HuR) and is required for cells to form SGs. When stress is terminated, Grb7 is hyperphosphorylated by focal adhesion kinase (FAK), loses its ability to directly interact with HuR and is dissociated from SG components, thereby disrupting SGs in recovering cells. Consistently, dominant-negative hypophospho mutants of FAK and Grb7 significantly attenuate SG disassembly during recovery. FAK activation followed by its phosphorylating Grb7 constitutes a cell-autonomous signalling pathway that regulates the disassembly of SGs and translational stimulation during recovery. This is the first reported pathway actively regulating the dynamics of SGs.  相似文献   

3.
4.
Stress granules (SGs) are cytoplasmic bodies wherein translationally silenced mRNAs are recruited for triage in response to environmental stress. We report that Drosophila cells form SGs in response to arsenite and heat shock. Drosophila SGs, like mammalian SGs, are distinct from but adjacent to processing bodies (PBs, sites of mRNA silencing and decay), require polysome disassembly, and are in dynamic equilibrium with polysomes. We further examine the role of the two Drosophila eIF2α kinases, PEK and GCN2, in regulating SG formation in response to heat and arsenite stress. While arsenite-induced SGs are dependent upon eIF2α phosphorylation, primarily via PEK, heat-induced SGs are phospho-eIF2α-independent. In contrast, heat-induced SGs require eIF2α phosphorylation in mammalian cells, as non-phosphorylatable eIF2α Ser51Ala mutant murine embryonic fibroblasts do not form SGs even after severe heat shock. These results suggest that mammals evolved alternative mechanisms for dealing with thermal stress.  相似文献   

5.
6.
The cold-inducible RNA-binding protein (CIRP) is a nuclear 18-kDa protein consisting of an amino-terminal RNA Recognition Motif (RRM) and a carboxyl-terminal domain containing several RGG motifs. First characterized for its overexpression upon cold shock, CIRP is also induced by stresses such as UV irradiation and hypoxia. Here, we investigated the expression as well as the subcellular localization of CIRP in response to other stress conditions. We demonstrate that oxidative stress leads to the migration of CIRP to stress granules (SGs) without alteration of expression. Stress granules are dynamic cytoplasmic foci at which stalled translation initiation complexes accumulate in cells subjected to environmental stress. Relocalization of CIRP into SGs also occurs upon other cytoplasmic stresses (osmotic pressure or heat shock) as well as in response to stresses of the endoplasmic reticulum. CIRP migration into SGs is independent from TIA-1 which has been previously reported to be a general mediator of SG formation, thereby suggesting the existence of multiple pathways leading to SG formation. Moreover, deletion mutants revealed that both RGG and RRM domains can independently promote CIRP migration into SGs. However, the methylation of arginine residues in the RGG domain is necessary for CIRP to exit the nucleus to be further recruited into SGs. By RNA-tethering experiments, we also show that CIRP down-regulates mRNA translation and that this activity is carried by the carboxyl-terminal RG-enriched domain. Altogether, our findings further reveal the diversity of mechanisms by which CIRP is regulated by environmental stresses and provide new insights into CIRP cytoplasmic function.  相似文献   

7.
The cellular stress response (SR) is a phylogenetically conserved protection mechanism that involves inhibition of protein synthesis through recruitment of translation factors such as eIF4G into insoluble stress granules (SGs) and blockade of proinflammatory responses by interruption of the signaling pathway from tumor necrosis factor alpha (TNF-alpha) to nuclear factor-kappaB (NF-kappaB) activation. However, the link between these two physiological phenomena has not been clearly elucidated. Here we report that eIF4GI, which is a scaffold protein interacting with many translation factors, interacts with TRAF2, a signaling molecule that plays a key role in activation of NF-kappaB through TNF-alpha. These two proteins colocalize in SGs during cellular exposure to stress conditions. Moreover, TRAF2 is absent from TNFR1 complexes under stress conditions even after TNF-alpha treatment. This suggests that stressed cells lower their biological activities by sequestration of translation factors and TRAF2 into SGs through a protein-protein interaction.  相似文献   

8.
9.
10.
In response to environmental stress, the related RNA-binding proteins TIA-1 and TIAR colocalize with poly(A)(+) RNA at cytoplasmic foci that resemble the stress granules (SGs) that harbor untranslated mRNAs in heat shocked plant cells (Nover et al. 1989; Nover et al. 1983; Scharf et al. 1998). The accumulation of untranslated mRNA at SGs is reversible in cells that recover from a sublethal stress, but irreversible in cells subjected to a lethal stress. We have found that the assembly of TIA-1/R(+) SGs is initiated by the phosphorylation of eIF-2alpha. A phosphomimetic eIF-2alpha mutant (S51D) induces the assembly of SGs, whereas a nonphosphorylatable eIF-2alpha mutant (S51A) prevents the assembly of SGs. The ability of a TIA-1 mutant lacking its RNA-binding domains to function as a transdominant inhibitor of SG formation suggests that this RNA-binding protein acts downstream of the phosphorylation of eIF-2alpha to promote the sequestration of untranslated mRNAs at SGs. The assembly and disassembly of SGs could regulate the duration of stress- induced translational arrest in cells recovering from environmental stress.  相似文献   

11.
Similar to the situation in mammalian cells and yeast, messenger ribonucleo protein (mRNP) homeostasis in plant cells depends on rapid transitions between three functional states, i.e. translated mRNPs in polysomes, stored mRNPs and mRNPs under degradation. Studies in mammalian cells showed that whenever the dynamic exchange of the components between these states is disrupted, stalled mRNPs accumulate in cytoplasmic aggregates, such as stress granules (SGs) or processing bodies (PBs). We identified PBs and SGs in plant cells by detection of DCP1, DCP2 and XRN4, as marker proteins for the 5'-->3' mRNA degradation pathway, and eIF4E, as well as the RNA binding proteins RBP47 and UBP1, as marker proteins for stored mRNPs in SGs. Cycloheximide-inhibited translation, stress treatments and mutants defective in mRNP homeostasis were used to study the dynamic transitions of mRNPs between SGs and PBs. SGs and PBs can be clearly discriminated from the previously described heat stress granules (HSGs), which evidently do not contain mRNPs. Thus, the role of HSGs as putative mRNP storage sites must be revised.  相似文献   

12.
Mammalian cells form dynamic cytoplasmic mRNA stress granules (SGs) in response to environmental stresses including viral infections. SGs are involved in regulating host mRNA function and metabolism, although their precise role during viral infection is unknown. SGs are thought to assemble based on functions of the RNA-binding proteins TIA-1/TIAR or Ras-GAP SH3 domain-binding protein (G3BP). Here, we investigated the relationship between a prototypical plus-strand RNA virus and SGs. Early during poliovirus infection, SG formation is induced, but as infection proceeds this ability is lost, and SGs disperse. Infection resulted in cleavage of G3BP, but not TIA-1 or TIAR, by poliovirus 3C proteinase. Expression of a cleavage-resistant G3BP restored SG formation during poliovirus infection and significantly inhibited virus replication. These results elucidate a mechanism for viral interference with mRNP metabolism and gene regulation and support a critical role of G3BP in SG formation and restriction of virus replication.  相似文献   

13.
The TOR complex 1 is a direct target of Rho1 GTPase   总被引:1,自引:0,他引:1  
Yan G  Lai Y  Jiang Y 《Molecular cell》2012,45(6):743-753
The TOR complex 1 (TORC1) in yeast is regulated by various stress conditions. However, the underlying mechanism is poorly understood. In this study, we show that stresses affect TORC1 function through Rho1, a member of Rho family GTPases. Upon activation by stresses, Rho1 binds directly to Kog1, a unique component of TORC1, resulting in downregulation of TORC1 activity and disruption of its membrane association. The binding also triggers the release and activation of the Tap42-2A phosphatase, a major effector of TORC1 that resides on the complex. Rapamycin and caffeine also induce Rho1 activation. While the two agents inhibit TOR directly, their effects on TORC1 signaling are largely dependent on Rho1 activation. Our findings demonstrate that TORC1 acts both upstream and downstream of Rho1 GTPase, unveiling a mechanism that integrates stress and nutrient signals to coordinate Rho1-mediated spatial expansion and TORC1-dependent mass increase.  相似文献   

14.
Stress granules (SGs) are nonmembranous organelles that are dynamically assembled and disassembled in response to various stressors. Under stressed conditions, polyadenylated mRNAs and translation factors are sequestrated in SGs to promote global repression of protein synthesis. It has been previously demonstrated that SG formation enhances cell survival and stress resistance. However, the physiological role of SGs in organismal aging and longevity regulation remains unclear. In this study, we used TIAR‐1::GFP and GTBP‐1::GFP as markers to monitor the formation of SGs in Caenorhabditis elegans. We found that, in addition to acute heat stress, SG formation could also be triggered by dietary changes, such as starvation and dietary restriction (DR). We found that HSF‐1 is required for the SG formation in response to acute heat shock and starvation but not DR, whereas the AMPK‐eEF2K signaling is required for starvation and DR‐induced SG formation but not heat shock. Moreover, our data suggest that this AMPK‐eEF2K pathway‐mediated SG formation is required for lifespan extension by DR, but dispensable for the longevity by reduced insulin/IGF‐1 signaling. Collectively, our findings unveil a novel role of SG formation in DR‐induced longevity.  相似文献   

15.
ZBP1 regulates mRNA stability during cellular stress   总被引:1,自引:0,他引:1       下载免费PDF全文
An essential constituent of the integrated stress response (ISR) is a reversible translational suppression. This mRNA silencing occurs in distinct cytoplasmic foci called stress granules (SGs), which transiently associate with processing bodies (PBs), typically serving as mRNA decay centers. How mRNAs are protected from degradation in these structures remains elusive. We identify that Zipcode-binding protein 1 (ZBP1) regulates the cytoplasmic fate of specific mRNAs in nonstressed cells and is a key regulator of mRNA turnover during the ISR. ZBP1 association with target mRNAs in SGs was not essential for mRNA targeting to SGs. However, ZBP1 knockdown induced a selective destabilization of target mRNAs during the ISR, whereas forced expression increased mRNA stability. Our results indicate that although targeting of mRNAs to SGs is nonspecific, the stabilization of mRNAs during cellular stress requires specific protein-mRNA interactions. These retain mRNAs in SGs and prevent premature decay in PBs. Hence, mRNA-binding proteins are essential for translational adaptation during cellular stress by modulating mRNA turnover.  相似文献   

16.
Although heat stress induces a variety of illnesses, there have been few studies designed to uncover the molecular mechanisms underlining the illnesses. We here demonstrate that heat activates ER stress, which inhibits heat shock responses (HSR) via translational block. In heat-stressed rats, ER stress responses, as represented by eIF2α phosphorylation and XBP1 splicing, occurred mainly in the cortex, where the HSR was substantially inhibited. Heat exposure also activated ER stress signals in primary cortical neurons. Since HSF1 knockdown enhanced heat-induced ER stress and subsequent cell death, HSR inhibition in turn augments ER stress, implying a vicious spiral of both stresses. Taken together, heat-induced ER stress impairs the HSR and enhances cell damage, thereby manifesting its unique effect on heat stress.  相似文献   

17.
Stress granules (SGs) are large cytoplasmic ribonucleoprotein complexes that are assembled when cells are exposed to stress. SGs promote the survival of stressed cells by contributing to the reprogramming of protein expression as well as by blocking pro-apoptotic signaling cascades. These cytoprotective effects implicated SGs in the resistance of cancer cells to radiation and chemotherapy. We have found that sodium selenite, a selenium compound with chemotherapeutic potential, is a potent inducer of SG assembly. Selenite-induced SGs differ from canonical mammalian SGs in their morphology, composition and mechanism of assembly. Their assembly is induced primarily by eIF4E-binding protein1 (4EBP1)-mediated inhibition of translation initiation, which is reinforced by concurrent phosphorylation of eIF2α. Selenite-induced SGs lack several classical SG components, including proteins that contribute to pro-survival functions of canonical SGs. Our results reveal a new mechanism of mammalian SG assembly and provide insights into how selenite cytotoxicity may be exploited as an anti-neoplastic therapy.  相似文献   

18.

Background

TDP-43 proteinopathies are characterized by loss of nuclear TDP-43 expression and formation of C-terminal TDP-43 fragmentation and accumulation in the cytoplasm. Recent studies have shown that TDP-43 can accumulate in RNA stress granules (SGs) in response to cell stresses and this could be associated with subsequent formation of TDP-43 ubiquinated protein aggregates. However, the initial mechanisms controlling endogenous TDP-43 accumulation in SGs during chronic disease are not understood. In this study we investigated the mechanism of TDP-43 processing and accumulation in SGs in SH-SY5Y neuronal-like cells exposed to chronic oxidative stress. Cell cultures were treated overnight with the mitochondrial inhibitor paraquat and examined for TDP-43 and SG processing.

Results

We found that mild stress induced by paraquat led to formation of TDP-43 and HuR-positive SGs, a proportion of which were ubiquitinated. The co-localization of TDP-43 with SGs could be fully prevented by inhibition of c-Jun N-terminal kinase (JNK). JNK inhibition did not prevent formation of HuR-positive SGs and did not prevent diffuse TDP-43 accumulation in the cytosol. In contrast, ERK or p38 inhibition prevented formation of both TDP-43 and HuR-positive SGs. JNK inhibition also inhibited TDP-43 SG localization in cells acutely treated with sodium arsenite and reduced the number of aggregates per cell in cultures transfected with C-terminal TDP-43 162-414 and 219-414 constructs.

Conclusions

Our studies are the first to demonstrate a critical role for kinase control of TDP-43 accumulation in SGs and may have important implications for development of treatments for FTD and ALS, targeting cell signal pathway control of TDP-43 aggregation.  相似文献   

19.
hnRNP A1 is a nucleocytoplasmic shuttling protein that is involved in many aspects of mRNA metabolism. We have previously shown that activation of the p38 stress-signaling pathway in mammalian cells results in both hyperphosphorylation and cytoplasmic accumulation of hnRNP A1, affecting alternative splicing regulation in vivo. Here we show that the stress-induced cytoplasmic accumulation of hnRNP A1 occurs in discrete phase-dense particles, the cytoplasmic stress granules (SGs). Interestingly, mRNA-binding activity is required for both phosphorylation of hnRNP A1 and localization to SGs. We also show that these effects are mediated by the Mnk1/2 protein kinases that act downstream of p38. Finally, depletion of hnRNP A1 affects the recovery of cells from stress, suggesting a physiologically significant role for hnRNP A1 in the stress response. Our data are consistent with a model whereby hnRNP A1 recruitment to SGs involves Mnk1/2-dependent phosphorylation of mRNA-bound hnRNP A1.  相似文献   

20.
Mammalian stress granules (SGs) harbor untranslated mRNAs that accumulate in cells exposed to environmental stress. Drugs that stabilize polysomes (emetine) inhibit the assembly of SGs, whereas drugs that destabilize polysomes (puromycin) promote the assembly of SGs. Moreover, emetine dissolves preformed SGs as it promotes the assembly of polysomes, suggesting that these mRNP species (i.e., SGs and polysomes) exist in equilibrium. We used green flourescent protein-tagged SG-associated RNA-binding proteins (specifically, TIA-1 and poly[A] binding protein [PABP-I]) to monitor SG assembly, disassembly, and turnover in live cells. Fluorescence recovery after photobleaching shows that both TIA-1 and PABP-I rapidly and continuously shuttle in and out of SGs, indicating that the assembly of SGs is a highly dynamic process. This unexpected result leads us to propose that mammalian SGs are sites at which untranslated mRNAs are sorted and processed for either reinitiation, degradation, or packaging into stable nonpolysomal mRNP complexes. A truncation mutant of TIA-1 (TIA-1DeltaRRM), which acts as a transdominant inhibitor of SG assembly, promotes the expression of cotransfected reporter genes in COS transfectants, suggesting that this process of mRNA triage might, directly or indirectly, influence protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号