首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo Y  Yang T  Lu J  Li S  Wan L  Long D  Li Q  Feng L  Li Y 《Life sciences》2011,88(13-14):598-605
AimsGinsenoside Rb1 could prevent ischemic neuronal death and focal cerebral ischemia, but its roles to liver warm I/R injury remain to be defined. We determined if Rb1 would attenuate warm I/R injury in mice.Main methodsMice were divided into sham, I/R, Rb1 + I/R (Rb1 postconditioning, 20 mg/kg, i.p. after ischemia), sham + L-NAME, I/R + L-NAME, and Rb1 + I/R + L-NAME groups using 60 min of the liver median and left lateral lobes ischemia. Serum levels of alanine aminotransferase (ALT) were measured and morphology changes of livers were evaluated. Contents of nitric oxide (NO) and nitric oxide synthase (NOS), malondialdehye (MDA) and activity of superoxide dismutase (SOD) were measured. Expressions of Akt, p-Akt, iNOS, HIF-1alpha, tumor necrosis factor-a (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) were also determined by western blot or immunohistochemistry.Key findingsRb1 postconditioning attenuated the dramatically functional and morphological injuries. The levels of ALT were significantly reduced in Rb1 group (p < 0.05). Rb1 upregulated the concentrations of NO, iNOS in serum, iNOS, and activity of SOD in hepatic tissues (p < 0.05), while it dramatically reduced the concentration of MDA (p < 0.05). Protein expressions of p-Akt, iNOS and HIF-1alpha were markedly enhanced in Rb1 group. Protein and mRNA expressions of TNF-α and ICAM-1 were markedly suppressed by Rb1 (p < 0.05).SignificanceWe found that Rb1 postconditioning could protect liver from I/R injury by upregulating the content of NO and NOS, and also HIF-1alpha protein expression. These protective effects could be abolished by L-NAME. These findings suggested Rb1 may have the therapeutic potential through ROS-NO-HIF pathway for management of liver warm I/R injury.  相似文献   

2.
3.
4.
Zhang L  Huang H  Cheng J  Liu J  Zhao H  Vizcaychipi MP  Ma D 《Life sciences》2011,88(25-26):1102-1107
AimsPerioperative renal dysfunction is associated with a high mortality. The aim of this study was to investigate whether isoflurane preconditioning provides a protection against renal ischemic–reperfusion injury and whether hypoxia inducible factor 1α (HIF-1α) is responsible for the protection afforded by isoflurane in mice.Main methodsAdult male C57BL/6 mice received vehicle (PBS), scrambled siRNA or HIF-1α siRNA via hydrodynamic injection through tail vein. Twenty-four hours after injection, they were exposed to 1.5% isoflurane in oxygen enriched air for 2 h while controls without injection were exposed to oxygen enriched air. Twenty-four hours after gas exposure, mice were sacrificed and their kidney were harvested for western blot while other cohorts underwent renal ischemia–reperfusion injury induced by bilateral renal pedicle clamping for 25 min for renal histological or functional analysis 24 h after reperfusion or by unilateral clamping for 40 min for survival rate analysis.Key findingsSurvival rate and the expression of HIF-1α and erythropoietin were significantly increased while apoptosis, renal tubule score, blood plasma creatinine and urea were decreased by isoflurane preconditioning. HIF-1α siRNA but not scrambled siRNA injection abrogated the protective effect of isoflurane preconditioning.SignificanceOur data suggested that isoflurane preconditioning provided a protection against renal ischemic–reperfusion injury which is very likely due to hypoxia inducible factor-1α upregulation.  相似文献   

5.
Li Y  Guo Z  Liu CF  Xing WG  Si TG  Liu F  Guo XY  Xing JZ 《Cryobiology》2012,65(1):56-59
ObjectiveTo analyze the effect of Argon-Helium cryosurgery (AHCS) combined with transcatheter renal arterial embolization (TRAE) on the differentiation of regulatory CD4+ CD25+ T cell (Treg) and its implication in patients with renal carcinoma.MethodsSeventy seven patients are included in the study, and divided into two groups: TRAE group (n = 45, receiving TRAE only) and TRAE + cryoablation group (n = 32, receiving cryoablation 2–3 weeks after TRAE). The percentage of Treg cells and T lymphocyte subsets (CD4+T, CD8+T, and CD4+T/CD8+T) in the peripheral blood is measured by flow cytometry previous to the therapy and 3 months after therapy. Meanwhile, the extent of tumor necrosis is measured by MRI or CT 1 month after therapy.ResultsThe percentages of Treg cells of patients in TRAE + cryoablation group decrease from (6.65 ± 1.22)% to (3.93 ± 1.16)%, (t = 42.768, P < 0.01), and the percentages of CD4+T and CD4+T/CD8+T increase significantly (P < 0.01). However, the results of patients in TRAE group show that the percentages of Treg, CD4+T, CD8+T and CD4+T/CD8+T increase slightly although the differences had no statistical significance (P > 0.05). The tumor necrosis rate of TRAE + cryoablation group is 57.5%, significantly higher than those of TRAE group, which shows 31.6% (t = 6.784, P < 0.01). The median survival duration of the TRAE + cryoablation group is 20 months, significantly longer than that of the TRAE group (χ2 = 7.368, P < 0.01). The decreasing extent of Treg cells is correlated with tumor necrosis rates (r = 0.90, P < 0.01) and life time (r = 0.67, P < 0.01).ConclusionThe therapy of TRAE combined with cryoablation contributes to reduce the percentage of Treg cells and improve the immune situation of patients with renal cell carcinoma, which consequently increase tumor necrosis rate and prolong the patients‘ survival duration.  相似文献   

6.
AimsWe investigated the effects of riboflavin (vitamin B2) on the kinetics of zymosan-induced peritonitis in three strains of mice.Main methodsPeritonitis was induced in males of C57BL/6J, BALB/c and CBA mice by intraperitoneal injection of zymosan (40 mg/kg) or zymosan supplemented with riboflavin (50 mg/kg). During the first 45 min of inflammation the pain symptoms were scored. At the selected time points (4, 6, 8, 10, 24, and 30 h) the mice were sacrificed and peritoneal exudates were retrieved. Leukocytes, among them polymorphonuclear cells (PMNs) and macrophages (Mac3+ cells) were counted. Levels of inducible nitric oxide synthase (iNOS) were measured in cell pellets while supernatants were used for measurements of nitric oxide, cytokine/chemokines (IL-6, IL-10, MCP-1, IFNγ, TNF-α, and IL-12p70), and matrix metalloproteinase-9 (MMP-9).Key findingA riboflavin ip injection induced pain symptoms itself, but reduced zymosan-induced pain in C57BL/6J and CBA strains of mice when coinjected with zymosan. In comparison with the mice injected with zymosan only, riboflavin coinjection prolonged inflammation in C57BL/6J mice due to prolonged macrophage accumulation; inhibited peritoneal leukocytes (PTL) accumulation in BALB/c due to inhibited influx of macrophages and PMNs; and inhibited PTL accumulation in CBA mice due to delayed PMN influx. These effects corresponded with the delayed (C57BL/6J) or inhibited (BALB/c and CBA) expression of iNOS in PTL lysates, and with the prolonged (C57BL/6) or inhibited (BALB/c) intraperitoneal accumulation of MMP-9. Moreover, cytokine accumulation was affected in a strain-specific way.SignificanceRiboflavin is antinociceptive during yeast-induced peritonitis, but its anti-inflammatory effects are strain-specific.  相似文献   

7.
Iwuchukwu OF  Tallarida RJ  Nagar S 《Life sciences》2011,88(23-24):1047-1054
AimsThe only FDA approved medication for colorectal cancer (CRC) prevention is celecoxib. Its adverse effects underline the need for safer drugs. Polyphenols like resveratrol are in clinical trials for this purpose. This study aimed at examining effects of resveratrol alone and in combination with curcumin or chrysin on UGT induction in Caco-2 cells. Phytochemical combinations were selected using drug combination analyses of various anti-proliferation ratios of resveratrol + curcumin and resveratrol + chrysin.Main methodsCell proliferation and UGT1A1 induction assays were carried out with individual polyphenols and combinations. Cell viability was determined with AlamarBlue assays. UGT1A1 mRNA was quantified via real time RT-PCR. UGT activity was determined with 4-methylumbelliferone (4MU) glucuronidation.Key findingsCell proliferation IC50 estimates (± SE) for resveratrol, curcumin and chrysin were 20.8 ± 1.2, 20.1 ± 1.1 and 16.3 ± 1.3 μM respectively. Combination of anti-proliferative effects showed additivity for resveratrol + chrysin and resveratrol + curcumin. Resveratrol at its IC50 mediated a four-fold induction of UGT1A1 mRNA in a concentration independent manner. Chrysin at its IC50 induced UGT1A1 expression seven-fold while Curcumin at its IC90 mediated a two-fold induction. The 20 μM:40 μM resveratrol + curcumin and 20 μM :32 μM resveratrol + chrysin combinations mediated the greatest increases in mRNA expression (12 and 22 folds respectively). Significant increase in 4-MU glucuronidation was observed with combinations exhibiting maximal mRNA induction.SignificancePhytochemical combinations can offer greater chemoprevention than single agents. These chemicals might offer safer options than present synthetic therapeutics for CRC prevention.  相似文献   

8.
AimPhysical exercise is important in the prevention and treatment of cardiovascular diseases. Nevertheless, controversy remains around type and intensity of effort required for significant biochemical protective changes. This study investigates two exercise protocols on ventricular oxidative parameters in rats post-infarction.Main methodsThirty-six 2-month-old male Wistar rats were divided in two groups (n = 18): Sham and acute myocardial infarction (AMI) conducted by blocking the coronary artery. Thirty days after AMI, animals were divided in 6 subgroups (n = 6): sham, sham + continuous training (60 min), sham + interval training, AMI, AMI + continuous training, and AMI + interval training. Training was conducted in water (30–32 °C) 5 times a week for 6 weeks. Animals were sacrificed 48 h after the last exercise routine. Left ventricles were used for oxidative stress analyses (antioxidant enzyme activity and level, oxidative damage) and HIF1α and cit c oxidase expression.Key findingsAfter AMI, both exercise models decreased superoxide levels significantly. Training routines did not alter SOD expression and activity, though CAT expression increased with continuous training and GPX level diminished in both training groups, which coincided with the increase in GPX activity. Lipid damage decreased only in the continuous training group, while protein damage decreased only in the interval training group. Cytochrome C increased in both groups, while HIF-1 α dropped significantly after both exercise protocols.SignificanceSignificant improvement occurred in myocardium redox status in rats challenged with AMI after different training routines. However, continuous training seems to be more efficient in improving the parameters analyzed.  相似文献   

9.
ObjectiveTo assess in a growth retardation (GR) model the impact of different propranolol (P) doses on anthropomorphometric and biomechanical variables of the appendicular skeleton.Materials and methodsTwenty-one day-old male Wistar rats were divided into the following groups: control (C), C + P3.5 (CP3.5); C + P7 (CP7); C + P10.5 (CP10.5); C + P14 (CP14); ED, ED + P3.5 (EDP3.5); ED + P7 (EDP7); ED + P10.5 (EDP10.5), and ED + P14 (EDP14). Control animals with/without P were fed a rodent diet ad libitum. GR rats with/without P were given 80% of the same diet per 100 g body weight for 4 weeks (T4). Propranolol 3.5, 7, 10.5, and 14 mg/kg/day was intraperitoneally injected 5 days/week for 4 weeks to the CP3.5 and EDP3.5; CP7 and EDP7; CP10.5 and EDP10.5, and CP14 and EDP14 groups respectively.ResultsAt T4, energy restriction had negative effects upon overall growth, femur, and its mechanical competence. Propranolol improved bone rigidity in GR animals at doses of 7 and 10.5 mg/kg/day, with a maximum response at 7 mg/kg/day.ConclusionsPropranolol 7 mg/kg/day would be the most effective dose for modeling incorporation of bone, as shown by the increased skeletal structural and mechanic efficiency in this animal model of growth retardation. Such effect may result from maintenance of mechanosensor viability, changes in its sensitivity, the biomechanical reference point and/or effector response in GR rats.  相似文献   

10.
AimsLate phase ischemic preconditioning (LPC) protects the heart against ischemia–reperfusion (I/R) injury. However, its effect on myocardial tissue oxygenation and related mechanism(s) is unknown. The aim of the current study is to determine whether LPC attenuates post-ischemic myocardial tissue hyperoxygenation through preserving mitochondrial oxygen metabolism.Main methodsC57BL/6 mice were subjected to 30 min coronary ligation followed by 60 min or 24 h reperfusion with or without LPC (3 cycles of 5 min I/5 min R): Sham, LPC, I/R, and LPC + I/R group. Myocardial tissue Po2 and redox status were measured with electron paramagnetic resonance (EPR) spectroscopy.Key findingsUpon reperfusion, tissue Po2 rose significantly above the pre-ischemic level in the I/R mice (23.1 ± 2.2 vs. 12.6 ± 1.3 mm Hg, p < 0.01). This hyperoxygenation was attenuated by LPC in the LPC + I/R mice (11.9 ± 2.0 mm Hg, p < 0.01). Activities of NADH dehydrogenase (NADH-DH), succinate-cytochrome c reductase (SCR) and cytochrome c oxidase (CcO) were preserved or increased in the LPC group, significantly reduced in the I/R group, and conserved in the LPC + I/R group. Manganese superoxide dismutase (Mn-SOD) protein expression was increased by LPC in the LPC and LPC + I/R mice compared to that in the Sham control (1.24 ± 0.01 and 1.23 ± 0.01, p < 0.05). Tissue redox status was shifted to the oxidizing state with I/R (0.0268 ± 0.0016/min) and was corrected by LPC in the LPC + I/R mice (0.0379 ± 0.0023/min). Finally, LPC reduced the infarct size in the LPC + I/R mice (10.5 ± 0.4% vs. 33.3 ± 0.6%, p < 0.05).SignificanceThus, LPC preserved mitochondrial oxygen metabolism, attenuated post-ischemic myocardial tissue hyperoxygenation, and reduced I/R injury.  相似文献   

11.
Ma Y  Zhang Z  Tang L  Xu YC  Xie ZM  Gu XF  Wang HX 《Cytotherapy》2012,14(4):483-493
Background aimsThe aim of this study was to evaluate the efficacy and safety of cytokine-induced killer (CIK) cell therapy for solid carcinomas.MethodsWe performed a computerized search of phase II/III clinical trial databases of CIK cell-based therapy using a combination of the terms ‘cytokine-induced killer cells’, ‘tumor’ and ‘cancer’.ResultsTreatment with CIK cells was associated with a significantly improved half-year survival (P = 0.003), 1-year survival (P = 0.0005), 2-year survival (P  < 0.01) and mean survival time (MST) (P  < 0.001). Patients in the CIK group showed a prolonged half-year progression-free survival (PFS) (P  < 0.01), 1-year PFS (P < 0.01) and median time to progression (MTTP) (P < 0.001). A favored disease control rate (DCR) was observed in patients receiving CIK cell therapy, while the objective response rate (ORR) was not altered (P = 0.05) compared with the non-CIK group (P = 0.007). CIK cell therapy could also reduce the adverse effects of grade III and IV leukopenia caused by chemotherapy (P = 0.002) and diminish hepatitis B virus (HBV)-DNA content (P < 0.01). However, the incidence of fever in the CIK therapy group was significantly higher than in the non-CIK group (P = 0.02). The percentage of CD3+, CD4+, CD4+ CD8+, CD3? CD56+ and CD3+ CD56+ T-lymphocyte subsets in the peripheral blood of cancer patients was significantly increased, whereas the percentage of CD8+ T-lymphocyte cells was significantly decreased in the CIK group compared with the non-CIK group (P < 0.01).ConclusionsCIK cell therapy has demonstrated a significant superiority in prolonging the MST, PFS, DCR and quality of life (QoL) of patients.  相似文献   

12.
Saadat M 《Cancer epidemiology》2012,36(2):e101-e103
AimThe paraoxonase 1 gene (PON1, MIN: 168820) is a member of the multifactorial antioxidant enzyme paraoxonase family (EC 3.1.1.2). Two common functional single-nucleotide polymorphisms L55M (dbSNP: rs854560) and Q192R (dbSNP: rs662) have been identified in the coding region of PON1. Several studies have investigated the associations between polymorphisms of PON1 and susceptibility to breast cancer, but have yielded apparently conflicting results. We therefore carried out a meta-analysis of published studies to clarify this inconsistency and to establish a comprehensive picture of the relationship between PON1 gene variants and breast cancer risk. Method: Overall six eligible studies were identified. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were obtained using fixed and random-effect models. Results: In our meta-analysis, the presence of the R allele was associated with decreased risk of breast cancer (QR + RR compared to QQ genotype, summary OR = 0.57, 95% CI: 0.49–0.67, P < 0.001). Both heterozygosity (OR = 1.32, 95% CI: 1.10–1.58, P = 0.002) and homozygosity (OR = 2.16, 95% CI: 1.75–2.68, P < 0.001) for the 55M allele were associated with increased risk of breast cancer. Also there was a significant linear trend in risk associated with zero, one, and two 55M alleles (χ2 = 54.2, P < 0.001).ConclusionThe present study showed that PON1 M and Q alleles are associated with a higher risk of breast cancer. Individuals having MM and QQ genotypes have a lower level and lower detoxification activity of the PON1 enzyme, which may increase the vulnerability of the breast to genetic damage by reducing the ability to detoxify inflammatory oxidants, as well as dietary carcinogens.  相似文献   

13.
BackgroundPelvic organs morbidity after irradiation of cancer patients remains a major problem although new technologies have been developed and implemented. A relatively simple and suitable method for routine clinical practice is needed for preliminary assessment of normal tissue intrinsic radiosensitivity. The micronucleus test (MNT) determines the frequency of the radiation induced micronuclei (MN) in peripheral blood lymphocytes, which could serve as an indicator of intrinsic cell radiosensitivity.AimTo investigate a possible use of the micronucleus test (MNT) for acute radiation morbidity prediction in gynecological cancer patients.Materials and methodsForty gynecological cancer patients received 50 Gy conventional external pelvic irradiation after radical surgery. A four-field “box” technique was applied with 2D planning. The control group included 10 healthy females.Acute normal tissue reactions were graded according to NCI CTCAE v.3.0. From all reaction scores, the highest score named “summarized clinical radiosensitivity” was selected for a statistical analysis.MNT was performed before and after in vitro irradiation with 1.5 Gy. The mean radiation induced frequency of micronuclei per 1000 binucleated cells (MN/1000) and lymphocytes containing micronuclei per 1000 binucleated cells (cells with MN/1000) were evaluated for both patients and controls.An arbitrary cut off value was created to pick up a radiosensitive individual: the mean value of spontaneous frequency of cells with MN/1000 ± 2SD, found in the control group.ResultsBoth mean spontaneous frequency of cells with MN/1000 and MN/1000 were registered to be significantly higher in cancer patients compared to the control group (t = 2.46, p = 0.02 and t = 2.51, p = 0.02). No statistical difference was registered when comparing radiation induced MN frequencies between those groups.Eighty percent (32) of patients developed grade 2 summarized clinical radiosensitivity, with great variations in MNT parameters. Only three patients with grade 2 “summarized clinical radiosensitivity” had values of cells with MN/1000 above the chosen radiosensitivity threshold.ConclusionThe present study was not able to confirm in vitro MNT applicability for radiosensitivity prediction in pelvic irradiation.  相似文献   

14.
AimsMonocyte chemotactic protein-1 (MCP-1) plays an important role in recruiting monocytes/macrophages to injured tubulointerstitial tissue. The present study examined whether indoxyl sulfate, a uremic toxin, regulates renal expression of MCP-1.Main methodsThe effect of indoxyl sulfate on the expression of MCP-1 was determined using human proximal tubular cells (HK-2 cells) and following animals: (1) Dahl salt-resistant normotensive rats (DN), (2) Dahl salt-resistant normotensive indoxyl sulfate-administered rats (DN + IS), (3) Dahl salt-sensitive hypertensive rats (DH), and (4) Dahl salt-sensitive hypertensive indoxyl sulfate-administered rats (DH + IS).Key findingsDN + IS, DH, and DH + IS rats showed significantly increased mRNA expression of MCP-1 in the kidneys compared with DN rats. DH + IS rats tended to show increased mRNA expression of MCP-1 in the kidneys compared with DH rats. Immunohistochemistry demonstrated the stimulatory effects of indoxyl sulfate on MCP-1 expression and monocyte/macrophage infiltration in the kidneys. Indoxyl sulfate upregulated mRNA and protein expression of MCP-1 in HK-2 cells. Indoxyl sulfate induced activation of ERK, p38, and JNK as well as of NF-κB and p53 in HK-2 cells. An antioxidant, and inhibitors of NF-κB, p53, ERK pathway (MEK1/2), and JNK suppressed indoxyl sulfate-induced mRNA expression of MCP-1 in HK-2 cells.SignificanceIndoxyl sulfate upregulates renal expression of MCP-1 through production of reactive oxygen species (ROS), and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells. Thus, accumulation of indoxyl sulfate in chronic kidney disease might be involved in the pathogenesis of tubulointerstitial injury through induction of MCP-1 in the kidneys.  相似文献   

15.
AimsTo investigate the 17-β estradiol in the acetylcholinesterase activity and lipid peroxidation in the brain and blood of ovariectomized rats of different ages.Main methodsAnimals were randomly assigned into three experimental groups of each age (n = 6). Control groups consisted of adult (sham-A) and middle-aged (sham-MA) female rats, ovariectomized adult (OVX-A) and middle-aged (OVX-MA) rats without estrogen therapy reposition, and ovariectomized adult (OVX + E2-A) and middle-aged (OVX + E2-MA) rats treated with 17-β estradiol for 30 days. After this period, AChE activity and lipid peroxidation were measured in the brain and blood.Key findingsThe AChE activity increased (p < 0.05) in striatum (ST) in OVX-A, OVX + E2-A and OVX-MA, and hippocampus (HP) in OVX-MA. The enzyme activity decreased (p < 0.05) in ST of OVX + E2-MA, and cerebral cortex (CC) in OVX + E2-A, OVX-MA and OVX + E2-MA. Blood AChE activity increased (p < 0.05) in OVX + E2-A and decreased (p < 0.05) in OVX-MA. Lymphocyte AChE activity increased (p < 0.05) in OVX-A and OVX + E2-A and decreased (p < 0.05) in OVX-MA. Lipid peroxidation increased (p < 0.05) in ST of OVX-A, CC of OVX-A and OVX-MA, HP of OVX-A, and cerebellum (CE) of OVX-A, OVX-MA, and OVX + E2-MA. Lipid peroxidation decreased (p < 0.05) in ST, CC and CE of OVX + E2-A, and ST and HP of OVX + E2-MA. Similar values of lipid peroxidation to control groups were found in ST and HP of OVX-MA, HP of OVX + E2-A and CC of OVX + E2-MA.Significance17-β estradiol is able to modulate the AChE activity and non-neuronal cholinergic response as well as to reduce lipid peroxidation. Its response is dependent on the age and brain structure analyzed.  相似文献   

16.
AimsNeutrophils have been found increasingly in the lungs of patients with severe asthma; however, it is unclear whether the neutrophils contribute to the induction of the airway obstruction. We determined using a murine model whether neutrophils are involved in the late asthmatic response (LAR), and analyzed mechanisms underlying the antigen-induced airway neutrophilia.Main methodsBALB/c mice sensitized by ovalbumin (OVA) + Al(OH)3 were challenged 4 times by intratracheal administration of OVA. Airway mechanics were measured as specific airway resistance.Key findingsInduction of the LAR after the 4th challenge coincided with airway neutrophilia. In contrast, eosinophil infiltration was established prior to the 4th challenge. A treatment with an anti-Gr-1 monoclonal antibody (mAb) before the 4th challenge selectively suppressed increases in the neutrophil number and myeloperoxidase (MPO) level in bronchoalveolar lavage fluid (BALF), and attenuated the magnitude of LAR by 60–70%. Selective suppression of eosinophilia by anti-IL-5 mAb had little effect on the LAR. The increases in neutrophil number and MPO level were partially inhibited by an anti-CD4 mAb treatment. The CD4+ cell depletion also significantly inhibited increases in neutrophil chemoattractants, IL-17A, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein (MIP)-2 in BALF. However, blockade of FcγRII/III failed to suppress the neutrophilia.SignificanceThese data suggest that neutrophils are key inducers of the LAR, and that the antigen-induced neutrophilia is partially dependent on activated CD4+ cells that are involved in the production of IL-17A, KC and MIP-2.  相似文献   

17.
Kim MK  Chae YN  Kim HD  Yang EK  Cho EJ  Choi SH  Cheong YH  Kim HS  Kim HJ  Jo YW  Son MH  Kim SH  Shin CY 《Life sciences》2012,90(1-2):21-29
AimTo characterize the pharmacodynamic profile of DA-1229, a novel dipeptidyl peptidase (DPP) 4 inhibitor.Main methodsEnzyme inhibition assays against DPP4, DPP8 and DPP9. Antidiabetic effects of DA-1229 in HF-DIO mice and young db/db mice.Key findingsDA-1229 was shown to potently inhibit the DPP4 enzyme in human and murine soluble forms and the human membrane-bound form with IC50 values of 0.98, 3.59 and 1.26 nM, respectively. As a reversible and competitive inhibitor, DA-1229 was more selective to human DPP4 (6000-fold) than to human DPP8 and DPP9. DA-1229 (0.1–3 mg/kg) dose-dependently inhibited plasma DPP4 activity, leading to increased levels of plasma GLP-1 and insulin, and thereby lowering blood glucose levels in mice. In high fat diet-fed (HF) mice, a single oral dose of 100 mg/kg of DA-1229 reduced plasma DPP4 activity by over 80% during a 24 h period. Long-term treatment with DA-1229 for 8 weeks revealed significant improvements in glucose intolerance and insulin resistance, accompanied by significant body weight reduction. However, it remains unclear whether there is a direct causal relationship between DPP4 inhibition and body weight reduction. In young db/db mice, the DA-1229 treatment significantly reduced blood glucose excursions for the first 2 weeks, resulting in significantly lower levels of HbA1c at the end of the study. Furthermore, the pancreatic insulin content of the treatment group was significantly higher than that of the db/db control.SignificanceDA-1229 as a novel and selective DPP4 inhibitor improves the insulin sensitivity in HF mice and delays the onset of diabetes in young db/db mice.  相似文献   

18.
Zhao YR  Dong JB  Li Y  Wu MP 《Life sciences》2012,90(21-22):867-873
AimsThis study sought to assess the effect of sphingomyelin synthase 2 (SMS2) over-expression on plaque component and endothelial dysfunction in atherosclerosis.Main methodsWe generated recombinant adenovirus vectors containing human SMS2 cDNA (AdV-SMS2) or control gene GFP cDNA (AdV-GFP). Both AdVs were injected (i.v.) into ApoE KO mice to establish SMS2 over-expressing and control mice models, respectively. The mice were fed a high fat diet for 30 days. We then examined their plasma lipid levels, expression levels of aortic inflammatory biomarkers critical for the plaque's stability, and numbers of peripheral endothelial progenitor cells (EPC).Key findingsCompared with the control mice, SMS2 over-expression had significantly (1) increased aortic matrix metalloproteinase-2 (MMP-2), monocyte chemoattractant protein-1 (MCP-1), tissue factor (TF) and cyclooxygenase-2 (COX-2) mRNA levels (1.9-fold, 2.2-fold, 2.6-fold and 3.2-fold, respectively, P < 0.01) and protein levels (2.2-fold, 1.9-fold, 1.9-fold and 2.1-fold, respectively, P < 0.01); (2) increased MMP-2, COX-2 in situ expression in aortic root (2.6-fold and 2.3-fold, respectively, P < 0.01); (3) decreased aortic COX-1 mRNA levels (65%, P < 0.01) and protein levels (64%, P < 0.01); and (4) decreased CD34/KDR-positive cells (33%, P < 0.01), circulating angiogenic cells (CACs) (50%, P < 0.05), and colony forming units (CFUs) (40%, P < 0.05) in circulation.SignificanceSMS2 over-expression was probably associated with increased expression of aortic inflammatory biomarkers, as well as decreased numbers of CD34/KDR-positive cells, CACs and CFUs in circulation. Therefore, SMS2 over-expression might correlate with endothelial dysfunction and aggravate atherosclerotic plaque instability in ApoE KO mice.  相似文献   

19.
Background aimsDonor-derived vertebral bone marrow (BM) has been proposed to promote chimerism in solid organ transplantation with cadaveric organs. Reports of successful weaning from immunosuppression in patients receiving directed donor transplants in combination with donor BM or blood cells and novel peri-transplant immunosuppression has renewed interest in implementing similar protocols with cadaveric organs.MethodsWe performed six pre-clinical full-scale separations to adapt vertebral BM preparations to a good manufacturing practice (GMP) environment. Vertebral bodies L4–T8 were transported to a class 10 000 clean room, cleaned of soft tissue, divided and crushed in a prototype bone grinder. Bone fragments were irrigated with medium containing saline, albumin, DNAse and gentamicin, and strained through stainless steel sieves. Additional cells were eluted after two rounds of agitation using a prototype BM tumbler.ResultsThe majority of recovered cells (70.9 ± 14.1%, mean ± SD) were eluted directly from the crushed bone, whereas 22.3% and 5.9% were eluted after the first and second rounds of tumbling, respectively. Cells were pooled and filtered (500, 200 μm) using a BM collection kit. Larger lumbar vertebrae yielded about 1.6 times the cells of thoracic vertebrae. The average product yielded 5.2 ± 1.2 × 1010 total cells, 6.2 ± 2.2 × 108 of which were CD45+ CD34+. Viability was 96.6 ± 1.9% and 99.1 ± 0.8%, respectively. Multicolor flow cytometry revealed distinct populations of CD34+ CD90+ CD117dim hematopoietic stem cells (15.5 ± 7.5% of the CD34 + cells) and CD45? CD73+ CD105+ mesenchymal stromal cells (0.04 ± 0.04% of the total cells).ConclusionsThis procedure can be used to prepare clinical-grade cells suitable for use in human allotransplantation in a GMP environment.  相似文献   

20.
Cao Y  Zhang SZ  Zhao SQ  Bruce IC 《Life sciences》2011,88(23-24):1026-1030
AimsTo investigate the role of the mitochondrial Ca2+-activated K+ channel in cardioprotection induced by limb remote ischemic preconditioning.Main methodsMale Sprague–Dawley rats (250–300 g) were randomized into control, ischemia/reperfusion (I/R), remote ischemic preconditioning (RPC), NS1619 (a specific mitochondrial Ca2+-activated K+ channel opener), and RPC + paxilline (a specific mitochondrial Ca2+-activated K+ channel inhibitor) groups. RPC was induced by 4 cycles of 5 min of ligation followed by 5 min of reperfusion of the left femoral artery. Myocardial I/R was achieved by ligation of the left anterior descending coronary artery for 30 min, followed by 120 min of reperfusion. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride staining, the hemodynamics were monitored, and lactate dehydrogenase (LDH) levels in the coronary effluent, manganese superoxide dismutase (Mn-SOD) content in mitochondria and mitochondrial membrane potential were measured spectrophotometrically. The ultrastructure of cardiomyocyte mitochondria was assessed by electron microscopy.Key findingsNS1619 (10 μM) improved heart function, decreased infarct size, reduced LDH release, maintained mitochondrial structural integrity and mitochondrial membrane potential, and increased the mitochondrial content of Mn-SOD to the same degree as RPC treatment. However, paxilline (1 μM) eliminated the cardioprotective effect conferred by RPC.SignificanceThe mitochondrial Ca2+-activated K+ channel participates in the myocardial protection by limb remote ischemic preconditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号