首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classical activation of macrophages infected with Leishmania species results in expression and activation of inducible NO synthase (iNOS) leading to intracellular parasite killing. Macrophages can contrastingly undergo alternative activation with increased arginase activity, metabolism of arginine along the polyamine pathway, and consequent parasite survival. An active role for parasite-encoded arginase in host microbicidal responses has not previously been documented. To test the hypothesis that parasite-encoded arginase can influence macrophage responses to intracellular Leishmania, a comparative genetic approach featuring arginase-deficient mutants of L. mexicana lacking both alleles of the gene encoding arginase (Deltaarg), as well as wild-type and complemented Deltaarg controls (Deltaarg[pArg]), was implemented. The studies showed: 1) the absence of parasite arginase resulted in a significantly attenuated infection of mice (p<0.05); 2) poorer survival of Deltaarg in mouse macrophages than controls correlated with greater NO generation; 3) the difference between Deltaarg or control intracellular survival was abrogated in iNOS-deficient macrophages, suggesting iNOS activity was responsible for increased Deltaarg killing; 4) consistently, immunohistochemistry showed enhanced nitrotyrosine modifications in tissues of mice infected with Deltaarg compared with control parasites. Furthermore, 5) in the face of decreased parasite survival, lymph node cells draining cutaneous lesions of Deltaarg parasites produced more IFN-gamma and less IL-4 and IL-10 than controls. These data intimate that parasite-encoded arginase of Leishmania mexicana subverts macrophage microbicidal activity by diverting arginine away from iNOS.  相似文献   

2.
Leishmaniasis is a parasitic disease that leads to chronic inflammation. Macrophages, depending on their activation state, are either hosts or killers of the parasites. Downregulation of nitric oxide (NO) synthesis by the parasite infecting the macrophages has been proposed to be an important evading mechanism based on in vitro studies. We confirmed inhibition of NO release by macrophages infected with Leishmania amazonensis in vitro. To examine the role of the parasite in regulating NO production in vivo, we monitored systemic NO levels elicited by challenging naive and L. amazonensis-infected BALB/c mice with lipopolysaccharide (LPS). Animals were challenged after 1, 2, 6, and 9 wk of infection. NO production was monitored by electron paramagnetic resonance spectroscopy as the levels of hemoglobin nitrosyl complexes (HbNO) present in the animal's blood. No significant differences in HbNO levels were observed between LPS-treated naive and inoculated mice at any time during infection. To control for increased macrophage numbers in infected mice, naive mice were injected with a macrophage cell line before LPS challenge; this treatment did not increase produced NO levels. The results argue against a major role for the parasite in downregulating NO production in vivo.  相似文献   

3.
When the parasitic protozoan Leishmania infect host macrophage cells, establishment of the infection requires alteration in the expression of genes in both the parasite and the host cells. In the early phase of infection of macrophages in vitro, Leishmania exposure affects the expression of a group of mouse macrophage genes containing the repetitive transposable element designated B1 sequence. In Leishmania-exposed macrophages compared with unexposed macrophages, small (approximately 0.5 kilobase) B1-containing RNAs (small B1-RNAs) are down-regulated, and large (1-4 kilobases) B1-containing RNAs (large B1-RNA) are up-regulated. The down-regulation of small B1-RNAs precedes the up-regulation of large B1-RNAs in Leishmania-exposed macrophages. These differential B1-containing gene expressions in Leishmania-exposed macrophages were verified using individual small-B1-RNA and large B1-RNA. The differential expressions of the B1-containing RNAs at the early phase of Leishmania-macrophage interaction may associate the establishment of the leishmanial infection.  相似文献   

4.
Kolodziej H  Kiderlen AF 《Phytochemistry》2005,66(17):2056-2071
The antileishmanial and immunomodulatory potencies of a total of 67 tannins and structurally related compounds were evaluated in terms of extra- and intra-cellular leishmanicidal effects and macrophage activation for release of nitric oxide (NO), tumour necrosis factor (TNF) and interferon (IFN)-like activities. Their effects on macrophage functions were further assessed by expression analysis (iNOS, IFN-alpha, IFN-gamma, TNF-alpha, IL-1, IL-10, IL-12, IL-18). With few exceptions, e.g., caffeic acid derivatives, these polyphenols revealed little direct toxicity for extracellular promastigote Leishmania donovani or L. major strains. In contrast, many polyphenols appreciably reduced the survival of the intracellular, amastigote parasite form in vitro. Upon activation, e.g., by immune response mediators such as IFN-gamma, macrophages may transform from permissive host to leishmanicidal effector cells. Our data from functional bioassays suggested that the effects of polyphenols on intracellular Leishmania parasites were due to macrophage activation rather than direct antiparasitic activity. Gene expression analyses not only confirmed functional data, they also clearly showed differences in the response of infected macrophages when compared to that of noninfected cells. Conspicuously, infected macrophages showed augmented and prolonged activation of host defense mechanisms, indicating that parasitised macrophages were exquisitely predisposed or "primed" to react to activating molecules such as polyphenols. This promotive effect may be of special benefit, e.g., stimulation of the non-specific immune system selectively at the site of infection and when needed. Although these data provide the basis for an immunological concept of plant polyphenols for their beneficial effects in various infectious conditions, in vivo experiments are essential to prove the therapeutic benefits of polyphenolic immunomodulators.  相似文献   

5.
To determine the role of IL-10 in cutaneous leishmaniasis, we examined lesion development following Leishmania major infection of genetically susceptible BALB/c mice lacking IL-10. Whereas normal BALB/c mice developed progressive nonhealing lesions with numerous parasites within them, IL-10(-/-) BALB/c mice controlled disease progression, and had relatively small lesions with 1000-fold fewer parasites within them by the fifth week of infection. We also examined a mechanism whereby Leishmania induced the production of IL-10 from macrophages. We show that surface IgG on Leishmania amastigotes allows them to ligate Fc gamma receptors on inflammatory macrophages to preferentially induce the production of high amounts of IL-10. The IL-10 produced by infected macrophages prevented macrophage activation and diminished their production of IL-12 and TNF-alpha. In vitro survival assays confirmed the importance of IL-10 in preventing parasite killing by activated macrophages. Pretreatment of monolayers with either rIL-10 or supernatants from amastigote-infected macrophages resulted in a dramatic enhancement in parasite intracellular survival. These studies indicate that amastigotes of Leishmania use an unusual and unexpected virulence factor, host IgG. This IgG allows amastigotes to exploit the antiinflammatory effects of Fc gamma R ligation to induce the production of IL-10, which renders macrophages refractory to the activating effects of IFN-gamma.  相似文献   

6.
DNA topoisomerases play a pivotal role in the regulation of cell division. Inhibition of Leishmania spp. topoisomerases represents an alternative to control parasite growth. Cancer research led to the development of several potent topoisomerase inhibitors such as topoisomerase I, topoisomerase II, or both (monobenzimidazole, terbenzimidazole, and protoberberine alkaloid-related compounds) that are effective antitumor agents. In the present study, we evaluated the efficacy of these compounds against Leishmania spp. growth in vitro. Some protoberberine compounds showed pronounced antileishmanial activity and were selected for further analysis in macrophages. These compounds did not affect macrophage viability and only slightly reduced macrophage nitric oxide generation in response to interferon-gamma. Moreover, exposure of infected macrophages to these compounds significantly reduced parasite loads. Collectively, our data suggest that protoberberine-related compounds have powerful antileishmania action and that minor structural variations among them can substantially improve their activity to restrict Leishmania spp. infection in vitro.  相似文献   

7.
The protozoan parasite Leishmania alters the activity of its host cell, the macrophage. However, little is known about the effect of Leishmania infection on host protein synthesis. Here, we show that the Leishmania protease GP63 cleaves the mammalian/mechanistic target of rapamycin (mTOR), a serine/threonine kinase that regulates the translational repressor 4E-BP1. mTOR cleavage results in the inhibition of mTOR complex 1 (mTORC1) and concomitant activation of 4E-BP1 to promote Leishmania proliferation. Consistent with these results, pharmacological activation of 4E-BPs with rapamycin, results in a dramatic increase in parasite replication. In contrast, genetic deletion of 4E-BP1/2 reduces parasite load in macrophages ex vivo and decreases susceptibility to cutaneous leishmaniasis in vivo. The parasite resistant phenotype of 4E-BP1/2 double-knockout mice involves an enhanced type I IFN response. This study demonstrates that Leishmania evolved a survival mechanism by activating 4E-BPs, which serve as major targets for host translational control.  相似文献   

8.
In vitro studies have shown that both macrophage activation and destruction of parasitized macrophages lead to leishmania destruction. The relative role played by such mechanisms in vivo have not been properly evaluated. We took advantage of the model of intravenous immunization with solubilized leishmanial antigen which renders partially resistant the otherwise highly susceptible BALB/c mice to address this issue avoiding the interference of different genetic backgrounds. Leishmania destruction occurred in three situations: destruction of the parasitized macrophage, which were in close contact with lymphocytes or eosinophils; extracellular damage, always surrounded by small foci of granulocytes; and parasite damage inside activated macrophages. Destruction of the parasitized macrophages was frequently seen in immunized and protected animals. Our observations suggest that destruction of parasite-loaded macrophages is an important mechanism of host protection in experimental cutaneous leishmaniasis.  相似文献   

9.
MOTIVATION: A common problem in the emerging field of metabolomics is the consolidation of signal lists derived from metabolic profiling of different cell/tissue/fluid states where a number of replicate experiments was collected on each state. RESULTS: We describe an approach for the consolidation of peak lists based on hierarchical clustering, first within each set of replicate experiments and then between the sets of replicate experiments. The problems of finding the dendrogram tree cutoff which gives the optimal number of peak clusters and the effect of different clustering methods were addressed. When applied to gas chromatography-mass spectrometry metabolic profiling data acquired on Leishmania mexicana, this approach resulted in robust data matrices which completely separated the wild-type and two mutant parasite lines based on their metabolic profile.  相似文献   

10.
Resident peritoneal macrophages from untreated mice develop microbicidal activity against amastigotes of the protozoan parasite Leishmania tropica (current nomenclature = Leishmania major) after in vitro exposure to LK from antigen-stimulated leukocyte culture fluids. This LK-induced macrophage microbicidal activity was completely abrogated by addition of 7:3 phosphatidylcholine: phosphatidylserine liposomes. Liposome inhibition was not due to direct toxic effects against the parasite or macrophage effector cell; factors in LK that induce macrophage microbicidal activity were not adsorbed or destroyed by liposome treatment. Other phagocytic particles, such as latex beads, had no effect on microbicidal activity. Moreover, liposome inhibition of activated macrophage effector function was relatively selective: LK-induced macrophage tumoricidal activity was not affected by liposome treatment. Liposome inhibition was dependent upon liposome dose (5 nmoles/culture) and time of addition of leishmania-infected, LK-treated macrophage cultures. Addition of liposomes through the initial 8 hr of culture completely inhibited LK-induced macrophage microbicidal activity; liposomes added after 16 hr had no effect. Similarly, microbicidal activity by macrophages activated in vivo by BCG or Corynebacterium parvum was not affected by liposome treatment. Liposome treatment also did not affect the increased resistance to infection induced in macrophages by LK. These data suggest that liposomes interfere with one or more early events in the induction of activated macrophages (macrophage-LK interaction) and not with the cytotoxic mechanism itself (parasite-macrophage interaction). These studies add to the growing body of data that implicate cell lipid in regulatory events controlling macrophage effector function.  相似文献   

11.
Protozoan parasites belonging to the genus Leishmania exhibit a pronounced tropism for macrophages although they have the capacity to infect a variety of other phagocytic and non-phagocytic mammalian cells. Unlike most other intramacrophage pathogens, the major proliferative stage of Leishmania resides in the mature phagolysosomes of these host cells. In this review we highlight some of the strategies utilized by the intracellular amastigote stage of Leishmania to survive in this compartment. Remarkably, and in contrast to many other intracellular pathogens, Leishmania amastigotes have a minimalist surface glycocalyx which may facilitate uptake of essential lipids and promote exposure of phospholipids required for phagocytosis via macrophage apoptotic cell receptors. Leishmania amastigotes also differ from many other intracellular pathogens in having complex nutritional requirements which must be scavenged from the host cell. Amino acids and polyamines appear to be important carbon sources and growth-limiting nutrients, respectively, and their availability to intracellular amastigotes may be regulated by the activation state of host macrophages. Metabolic processes in both the parasite and host cell may thus be crucial determinants of disease outcome.  相似文献   

12.
Control of human leishmaniases relies on appropriate diagnosis and reliable methods for monitoring chemotherapy. The current method used for estimation of parasite burden during chemotherapy patient follow-up as well as in pharmacological studies performed in experimental models involves PCR-based assays. Compared to time-consuming conventional methods, this type of Leishmania DNA detection-based method is extremely sensitive, but could fail in distinguishing viable Leishmania from slowly degenerating ones. We have used an in vitro model to monitor the duration of Leishmania DNA persistence in mouse macrophages following exposure to l-leucine ester, a molecule otherwise known to rapidly kill intracellular Leishmania amazonensis amastigotes. At 1h of post l-leucine ester exposure, more than 98% of amastigote-loaded macrophages harbored killed parasites and parasite remnants, as assessed by microscopy. This dramatic decrease in parasite load and the microscopic parasite follow-up over the 120 h time period studied were correlated with Leishmania DNA as quantified by real-time PCR. Our results indicate that kinetoplast and nuclear parasite DNA degradation occurs very rapidly after amastigote death. These data add further weight to the argument that PCR assays represent not only a robust method for diagnosis but can also be reliable for monitoring parasite size reduction rate post any intervention (Leishmania-targeting molecules, immunomodulators...).  相似文献   

13.
The phagocytosis of free Plasmodium chabaudi parasite by resident peritoneal macrophages of mouse was studied in an in vitro system. The effect of antimalarial antiserum (HIS) was assessed by preincubation of parasite macrophages and both parasite and macrophages with HIS prior to use in phagocytic assays. Highest phagocytic index was obtained with HIS pretreated parasites. The two activities viz. opsonic (parasite dependent) and cytophilic (macrophage dependent) were noted to operate independent of each other. The phagocytosis promoting activity was found to be complement dependent. The receptor site for binding of HIS opsonized but not medium opsonized parasite on the surface of macrophages was blocked by pretreatment of these cells with HIS-soluble antigen combination.  相似文献   

14.
The cytotoxins produced by phagocytic cells lacking peroxidases such as macrophages remain elusive. To elucidate macrophage microbicidal mechanisms in vivo, we compared the lesion tissue responses of resistant (C57Bl/6) and susceptible (BALB/c) mice to Leishmania amazonensis infection. This comparison demonstrated that parasite control relied on lesion macrophage activation with inducible nitric oxide synthase expression (iNOS), nitric oxide synthesis, and extensive nitration of parasites inside macrophage phagolysosomes at an early infection stage. Nitration and iNOS expression were monitored by confocal microscopy; nitric oxide synthesis was monitored by EPR. The main macrophage nitrating agent was shown to be peroxynitrite derived because parasite nitration occurred in the virtual absence of polymorphonuclear cells (monitored as peroxidase activity) and was accompanied by protein hydroxylation (monitored as 3-hydroxytyrosine levels). In vitro studies confirmed that peroxynitrite is cytotoxic to parasites whereas nitric oxide is cytostatic. The results indicate that peroxynitrite is likely to be produced close to the parasites and most of it reacts with carbon dioxide to produce carbonate radical anion and nitrogen dioxide whose concerted action leads to parasite nitration. In parallel, some peroxynitrite decomposition to the hydroxyl radical should occur due to the detection of hydroxylated proteins in the healing tissues. Consequently, peroxynitrite and derived radicals are likely to be important macrophage-derived cytotoxins.  相似文献   

15.
Host macrophage infection by the parasite Leishmania donovani is heterogeneous, but it is not clear which factors are responsible for parasite recognition within the macrophages. One possible factor may be the alteration of the microviscosity of the macrophage membrane. This in turn may affect receptor expression and hence parasite infection. In this paper we describe alteration of the lipid composition and hence the microviscosity of the macrophage membrane in a controlled manner using liposome fusion technique. At a higher macrophage membrane microviscosity a larger number of parasites have been found to adhere to the macrophage surface. However, the proportion of parasites finally internalized when compared to parasites adhering to macrophages is inversely correlated with the artificially altered macrophage membrane microviscosity. The process of endocytosis has been examined in both native and lipid modified macrophages in the presence of several sugar antagonists. The results indicate (i) glucose and mannose are specifically involved in the binding process, and (ii) the microviscosity has a key role in controlling the macrophage parasite interaction. The results obtained so far support a model of endocytosis where expression of the receptor is a critical initial process dependent on the microviscosity of the membrane.  相似文献   

16.
Induction of activated macrophages in C3H/HeJ mice by avirulent Salmonella   总被引:3,自引:0,他引:3  
A single injection of viable Salmonella typhimurium SL3235, an avirulent organism blocked in the aromatic pathway, induced the generation of activated peritoneal macrophages in three different C3H mouse strains, including macrophage-defective C3H/HeJ mice. Macrophages obtained from immunized mice were cytotoxic for B16 melanoma cells, P815 mastocytoma cells, and TU-5 fibrosarcoma cells and microbicidal in vitro for the obligate, intracellular, protozoan parasite Leishmania major. The capacity of live SL3235 to activate C3H/HeJ macrophages contrasts with the failure of live Bacillus Calmette-Guérin to induce activated macrophages in this mouse strain. Although viable SL3235 were capable of fully activating cells of both normal and defective mice, a dose-dependent difference was observed in the number of organisms necessary for induction of tumoricidal macrophages in C3HeB/FeJ (normal) and C3H/HeJ (defective) animals. As few as 80 viable SL3235 were capable of activating C3HeB/FeJ macrophages whereas 5 X 10(4) organisms were required to activate C3H/HeJ macrophages. Maximal macrophage activation occurred 7 to 10 days after SL3235 inoculation in C3H/HeJ and C3HeB/FeJ mice. Acetone-killed cells of SL3235 had some but not all of the activity of the living Salmonella. A single in vivo injection of the nonviable preparation resulted in the induction of tumoricidal macrophages in C3HeB/FeJ but not in C3H/HeJ mice, even when tested over a wide dosage range. Injection of acetone-killed cells of SL3235 did, however, result in a population of primed macrophages in C3H/HeJ mice, as explanted cells could be induced to express activated macrophage effector activities after additional treatment in vitro with either LPS or IFN-gamma. Thus, in vivo administration of viable SL3235 is, by itself, capable of eliciting the full series of steps required for activation of C3H/HeJ macrophages, whereas killed SL3235 only provides signals sufficient to prime these defective macrophages for further activation in vitro. AI 15613  相似文献   

17.
Amastigotes of Leishmania major have a great ability to evade destruction in host cells. This study investigated the activation in resident, inflammatory macrophages and J774 cells in vitro treated with lipopolysaccharide (LPS), soluble Leishmania antigen (SLA), calcium ionophore (CaI) and magnesium (Mg2+) alone or combined. An increase in nitric oxide (NO) production was observed in J774 or inflammatory macrophages treated with LPS alone or in combination with SLA and CaI. The same treatments did not affect the NO release by resident macrophages. There was no interference in uptake of L. major but CaI decreased intracellular proliferation of the parasite. This study demonstrated the importance of CaI in decreasing L. major proliferation inside murine macrophages while Mg2+ seemed to increase parasite proliferation. These finding may help to understand the events involved in host cells' clearance of this pathogen.  相似文献   

18.
This study describes some of the parameters of the cellular immune response elicited in mice by inoculation of the nonpathogenic protozoan parasite, Leishmania enriettii. Incubation in vitro of leishmania-infected mouse peritoneal macrophages with spleen cells from syngeneic leishmania-immune animals resulted in activation of the phagocytes, leading to intracellular parasite destruction. Activation required interaction of sensitized lymphocytes with parasite antigen released or displayed by infected macrophages. The effect was dependent both on the dose of parasites used for in vivo priming and on the number of spleen cells cocultivated with parasitized macrophages. The activating capacity of lymphocytes was abrogated by anti-Thy-1 antiserum treatment and was retained in the effluent cells after nylon-wool separation. Activation was followed by lysis of part of the macrophage monolayer. Destruction of the phagocytes did not appear to result from the activation process per se and may represent a cytotoxic activity of sensitized lymphocytes for macrophages bearing parasite antigen on their surface.  相似文献   

19.
Leishmania parasites infect macrophages, cells normally involved in innate defense against pathogens. Leishmania amazonensis and Leishmania major cause severe or mild disease, respectively, consistent with each parasite's ability to survive within activated macrophages. The mechanisms underlying increased virulence of L.?amazonensis are mostly unknown. We show that L.?amazonensis promotes its own survival by inducing expression of CD200, an immunoregulatory molecule that inhibits macrophage activation. L.?amazonensis does not form typical nonhealing lesions in CD200(-/-) mice and cannot replicate in CD200(-/-) macrophages, an effect reversed by exogenous administration of soluble CD200-Fc. The less virulent L.?major does not induce CD200 expression and forms small, self-healing lesions in both wild-type and CD200(-/-) mice. Notably, CD200-Fc injection transforms the course of L.?major infection to one resembling L.?amazonensis, with large, nonhealing lesions. CD200-dependent iNOS inhibition allows parasite growth in macrophages, identifying a mechanism for the increased virulence of L.?amazonensis.  相似文献   

20.
The human leishmaniasis are persistent infections of macrophages caused by protozoa of the genus Leishmania. The chronic nature of these infections is in part related to induction of macrophage deactivation, linked to activation of the Src homology 2 domain containing tyrosine phosphatase-1 (SHP-1) in infected cells. To investigate the mechanism of SHP-1 activation, lysates of Leishmania donovani promastigotes were subjected to SHP-1 affinity chromatography and proteins bound to the matrix were sequenced by mass spectrometry. This resulted in the identification of Leishmania elongation factor-1alpha (EF-1alpha) as a SHP-1-binding protein. Purified Leishmania EF-1alpha, but not host cell EF-1alpha, bound directly to SHP-1 in vitro leading to its activation. Three independent lines of evidence indicated that Leishmania EF-1alpha may be exported from the phagosome thereby enabling targeting of host SHP-1. First, cytosolic fractions prepared from macrophages infected with [(35)S]methionine-labeled organisms contained Leishmania EF-1alpha. Second, confocal, fluorescence microscopy using Leishmania-specific antisera detected Leishmania EF-1alpha in the cytosol of infected cells. Third, co-immunoprecipitation showed that Leishmania EF-1alpha was associated with SHP-1 in vivo in infected cells. Finally, introduction of purified Leishmania EF-1alpha, but not the corresponding host protein into macrophages activated SHP-1 and blocked the induction of inducible nitric-oxide synthase expression in response to interferon-gamma. Thus, Leishmania EF-1alpha is identified as a novel SHP-1-binding and activating protein that recapitulates the deactivated phenotype of infected macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号