首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combretastatins have received significant attention because of their simple chemical structures, excellent antitumor efficacy and novel antivascular mechanisms of action. Herein, we report the synthesis of 20 novel acetyl analogs of CA-4 (1), synthesized from 3,4,5-trimethoxyphenylacetone that comprises the A ring of CA-4 with different aromatic aldehydes as the B ring. Molecular modeling studies indicate that these new compounds possess a 'twisted' conformation similar to CA-4. The new analogs effectively inhibit the growth of human and murine cancer cells. The most potent compounds 6k, 6s and 6t, have IC(50) values in the sub-μM range. Analog 6t has an IC(50) of 182 nM in MDA-MB-435 cells and has advantages over earlier analogs due to its enhanced water solubility (456 μM). This compound initiates microtubule depolymerization with an EC(50) value of 1.8 μM in A-10 cells. In a murine L1210 syngeneic tumor model 6t had antitumor activity and no apparent toxicity.  相似文献   

2.
Structure activity relationships are described for a series of succinyl hydroxamic acids 4a-o as potent and selective inhibitors of matrix metalloprotease-3 (stromelysin-1). Optimisation of P1' and P3' groups gave compound 4j (MMP-3 IC50=5.9nM) which was >140-fold less potent against MMP-1 (IC50=51,000nM), MMP-2 (IC50=1790nM), MMP-9 (IC50=840nM) and MMP-14 (IC50=1900nM).  相似文献   

3.
A series of benzil derivatives related to combretastatin A-4 (CA-4) have been synthesized by oxidation of diarylalkynes promoted by PdI(2) in DMSO. Using this new protocol, 14 benzils were prepared in good to excellent yields and their biological activity has been delineated. Several benzils exhibited excellent antiproliferative activity: for example, 4j and 4k bearing the greatest resemblance to CA-4 and AVE-8062, respectively, were found to inhibit cell growth at the nanomolar level (20-50nM) on four human tumor cell lines. Flow cytometric analysis indicates that these compounds act as antimitotics and arrest the cell cycle in G(2)/M phase. A cell-based assay indicated that compounds 4j and 4k displayed a similar inhibition of tubulin assembly with an IC(50) value similar to CA-4. These results clearly demonstrated that the Z-double bond of CA-4 can be replaced by a 1,2-diketone unit without significant loss of cytotoxicity and inhibition of tubulin assembly potency.  相似文献   

4.
A novel series of cyclobutenedione centered C(4)-alkyl substituted furanyl analogs was developed as potent CXCR2 and CXCR1 antagonists. Compound 16 exhibits potent inhibitory activities against IL-8 binding to the receptors (CXCR2 Ki=1 nM, IC(50)=1.3 nM; CXCR1 Ki=3 nM, IC(50)=7.3 nM), and demonstrates potent inhibition against both Gro-alpha and IL-8 induced hPMN migration (chemotaxis: CXCR2 IC(50)=0.5 nM, CXCR1 IC(50)=37 nM). In addition, 16 has shown good oral pharmacokinetic profiles in rat, mouse, monkey, and dog.  相似文献   

5.
A series of syn-restricted polymethoxylated 4-heteroarylcoumarins--the isostuctural analogs of combretastatin A-4--was synthesized by Suzuki-Miyaura cross-coupling reaction and evaluated for antiproliferative activity. The 4-(1-methyl-1H-indol-5-yl)chromen-2-ones exhibit a potent cytotoxicity against HBL100 epithelial cell line with an IC(50) value amounting to 0.098 and 0.078 microM, respectively. The two compounds, having an indolyl moiety, potent inhibit in vitro microtubule assembly with a substoichiometric mode of action. A structure-activity relationship was discussed and the indolyl moiety was proved to be a good surrogate for the 3-hydroxy-4-methoxyphenyl ring of CA-4.  相似文献   

6.
《Autophagy》2013,9(6):878-879
CAA0225 ((2S,3S)-oxirane-2,3-dicarboxylic acid 2-[((S)-1-benzylcarbamoyl-2-phenyl-ethyl)-amide] 3-{[2-(4-hydroxy-phenyl)-ethyl]-amide}) is a cathepsin L-specific inhibitor recently selected out by extensive screening of a series of new epoxysuccinyl peptides. CAA0225 inhibited rat liver cathepsin L with IC50 values of 1.9 nM, but not rat liver cathepsin B (IC50, >1000-5000 nM). We compared effects of CAA0225 on autophagy with those of CA-074 that was previously developed as a cathepsin B-specific inhibitor. In HeLa and Huh-7 cells cultured under nutrient-deprived conditions both CAA0225 and CA-074 significantly and comparably inhibited degradation of long-lived proteins. Meanwhile, CAA0225 effectively inhibited degradation of LC3-II and GABARAP, whereas CA-074-OMe had only a marginal effect on their levels. Therefore, cathepsin L does not seem to play a general role in the degradation of proteins in the lumen of autophagosomes, but is involved more specifically in the degradation of autophagosomal membrane markers.  相似文献   

7.
A series of thiosemicarbazone analogs based on the benzophenone, thiophene, pyridine, and fluorene molecular frameworks has been prepared by chemical synthesis and evaluated as small-molecule inhibitors of the cysteine proteases cathepsin L and cathepsin B. The two most potent inhibitors of cathepsin L in this series (IC(50)<135 nM) are brominated-benzophenone thiosemicarbazone analogs that are further functionalized with a phenolic moiety (2 and 6). In addition, a bromo-benzophenone thiosemicarbazone acetyl derivative (3) is also strongly inhibitory against cathepsin L (IC(50)=150.8 nM). Bromine substitution in the thiophene series results in compounds that demonstrate only moderate inhibition of cathepsin L. The two most active analogs in the benzophenone thiosemicarbazone series are highly selective for their inhibition of cathepsin L versus cathepsin B.  相似文献   

8.
Fourteen N-acetylated and non-acetylated 3,4,5-tri- or 2,5-dimethoxypyrazoline analogs of combretastatin-A4 (1) were synthesized. A non-acetylated derivative (5a) with the same substituents as CA-4 (1) was the most active compound in the series, with IC(50) values of 2.1 and 0.5 microM in B16 and L1210 cell lines, respectively. In contrast, a similar compound with an acetyl group at N1 of the pyrazoline ring (6g) showed poor activity in the cell lines studied. A cell-based assay indicated that compound 5a caused extensive microtubule depolymerization with an EC(50) value of 7.1 microM in A-10 cells while no activity was seen with the acetylated compound. Molecular modeling studies showed that these compounds possess a twisted conformation similar to CA-4 (1).  相似文献   

9.
Two new aryl azides, (Z)-1-(3'-azido-4'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 9 and (Z)-1-(4'-azido-3'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 5, modeled after the potent antitumor, antimitotic agent combretastatin A-4 (CA-4), have been prepared by chemical synthesis as potentially useful photoaffinity labeling reagents for the colchicine site on beta-tubulin. Aryl azide 9, in which the 3'-hydroxyl group of CA-4 is replaced by an azido moiety, demonstrates excellent in vitro cytotoxicity against human cancer cell lines (NCI 60 cell line panel, average GI50 = 4.07 x 10(-8) M) and potent inhibition of tubulin polymerization (IC50 = 1.4+/-0.1 microM). The 4'-azido analogue 5 has lower activity (NCI 60 cell line panel, average GI50 = 2.28 x 10(-6) M, and IC50 = 5.2+/-0.2 microM for inhibition of tubulin polymerization), suggesting the importance of the 4'-methoxy moiety for interaction with the colchicine binding site on tubulin. These CA-4 aryl azide analogues also inhibit binding of colchicine to tubulin, as does the parent CA-4, and therefore these compounds are excellent candidates for photoaffinity labeling studies.  相似文献   

10.

Background

Chemotheraputic drugs often target the microtubule cytoskeleton as a means to disrupt cancer cell mitosis and proliferation. Anti-microtubule drugs inhibit microtubule dynamics, thereby triggering apoptosis when dividing cells activate the mitotic checkpoint. Microtubule dynamics are regulated by microtubule-associated proteins (MAPs); however, we lack a comprehensive understanding about how anti-microtubule agents functionally interact with MAPs. In this report, we test the hypothesis that the cellular levels of microtubule depolymerases, in this case kinesin-13 s, modulate the effectiveness of the microtubule disrupting drug colchicine.

Methodology/Principal Findings

We used a combination of RNA interference (RNAi), high-throughput microscopy, and time-lapse video microscopy in Drosophila S2 cells to identify a specific MAP, kinesin-like protein 10A (KLP10A), that contributes to the efficacy of the anti-microtubule drug colchicine. KLP10A is an essential microtubule depolymerase throughout the cell cycle. We find that depletion of KLP10A in S2 cells confers resistance to colchicine-induced microtubule depolymerization to a much greater extent than depletion of several other destabilizing MAPs. Using image-based assays, we determined that control cells retained 58% (±2%SEM) of microtubule polymer when after treatment with 2 µM colchicine for 1 hour, while cells depleted of KLP10A by RNAi retained 74% (±1%SEM). Likewise, overexpression of KLP10A-GFP results in increased susceptibility to microtubule depolymerization by colchicine.

Conclusions/Significance

Our results demonstrate that the efficacy of microtubule destabilization by a pharmacological agent is dependent upon the cellular expression of a microtubule depolymerase. These findings suggest that expression levels of Kif2A, the human kinesin-13 family member, may be an attractive biomarker to assess the effectiveness of anti-microtubule chemotherapies. Knowledge of how MAP expression levels affect the action of anti-microtubule drugs may prove useful for evaluating possible modes of cancer treatment.  相似文献   

11.
A series of modified colchicine and isocolchicine analogs (C-7 substituent) were synthesized and evaluated in vitro against a PC3 cancer cell line and for inhibition of microtubule polymerization. The colchicine analogs all displayed strong inhibition of tubulin polymerization, while compounds 6 and 20 also possessed an increased cytotoxic activity as compared to colchicine. More importantly, isocolchicine analogs 7, 15, and 17 showed inhibition of microtubule polymerization with IC(50) values ranging from 58 to 68muM. In addition, 7 displayed strong cytotoxic activity with an IC(50)=93nM which was more potent than colchicine analog 12.  相似文献   

12.
The design and synthesis of a novel piperidine series of farnesyltransferase (FTase) inhibitors with reduced potential for metabolic glucuronidation are described. The various substitution and exchange of the phenyl group at the C-2 position of the previously described 2-(4-hydroxy)phenyl-3-nitropiperidine 1a (FTase IC(50)=5.4nM) resulted in metabolically stable compounds with potent FTase inhibition (14a IC(50)=4.3nM, 20a IC(50)=3.0nM, and 50a IC(50)=16nM). Molecular modeling studies of these compounds complexed with FTase and farnesyl pyrophosphate are also described.  相似文献   

13.
Previous investigations on the incubation of phenstatin with rat and human microsomal fractions revealed the formation of nine main metabolites. The structures of eight of these metabolites have been now confirmed by synthesis and their biological properties have been reported. Eaton's reagent was utilized as a convenient condensing agent, allowing, among others, a simple multigram scale preparation of phenstatin. Synthesized metabolites and related compounds were evaluated for their antiproliferative activity in the NCI-60 cancer cell line panel, and for their effect on microtubule assembly. Metabolite 23 (2'-methoxyphenstatin) exhibited the most potent in vitro cytotoxic activity: inhibition of the growth of K-562, NCI-H322M, NCI-H522, KM12, M14, MDA-MB-435, NCI/ADR-RES, and HS 578T cell lines with GI(50) values <10nM. It also showed more significant tubulin polymerization inhibitory activity than parent phenstatin (3) (IC(50)=3.2 μM vs 15.0 μM) and induced G2/M arrest in murine leukemia DA1-3b cells. The identification of this active metabolite led to the design and synthesis of analogs with potent in vitro cytotoxicity and inhibition of microtubule assembly.  相似文献   

14.
A new series of compounds, in which the 2-amino-4-methoxyphenyl ring of phenstatin analogue 5 was replaced with 2- or 3-amino-benzoheterocycles, was synthesized and evaluated for antiproliferative activity and inhibition of colchicine binding. The lack of activity of 3',4'-dimethoxy- and 4'-methoxy-benzoyl derivatives (8 and 9, respectively) indicates that the 3',4',5'-trimethoxybenzoyl moiety is critical for the activity. Two compounds, 7 and 11, displayed potent antiproliferative activity, with IC50 values ranging from 25 to 100 nM against a variety of cancer cell lines. Derivative 11 was more active than CA-4 as an inhibitor of tubulin polymerization. The results demonstrated that the antiproliferative activity was correlated with inhibition of tubulin polymerization.  相似文献   

15.
We have developed the [5-(4-nitrophenyl)-2-furyl]acrylic acid substituted benzophenone 4g as a novel lead for anti-malarial agents. Here, we demonstrated that the acyl residue at the 2-amino group of the benzophenone core structure has to be a phenylacetic acid substructure substituted in its para-position with methyl or other substituents of similar size. The trifluoromethyl substituted derivative displayed an IC(50) of 47 nM against the multi-drug resistant Plasmodium falciparum strain Dd2.  相似文献   

16.
NT-702 (parogrelil hydrochloride, NM-702), 4-bromo-6-[3-(4-chlorophenyl)propoxy]-5-[(pyridin-3-ylmethyl)amino]pyridazin-3(2H)-one hydrochloride, a novel phosphodiesterase (PDE) inhibitor synthesized as a potent vasodilatory and antiplatelet agent, is being developed for the treatment of intermittent claudication (IC) in patients with peripheral arterial disease. We assessed the efficacy of NT-702 in an experimental IC model as compared with cilostazol and additionally investigated the pharmacological property in vitro and ex vivo. NT-702 selectively inhibited PDE3 (IC(50)=0.179 and 0.260 nM for PDE3A and 3B) more potently than cilostazol (IC(50)=231 and 237 nM for PDE3A and 3B) among recombinant human PDE1 to PDE6. NT-702 inhibited in vitro human platelet aggregation induced by various agonists (IC(50)=11 to 67 nM) and phenylephrine-induced rat aortic contraction (IC(50)=24 nM). Corresponding results for cilostazol were 4.1 to 17 microM and 1.0 microM, respectively. NT-702 (3 mg/kg or more) significantly inhibited ex vivo rat platelet aggregation after a single oral dose. For cilostazol, 300 mg/kg was effective. In a rat femoral artery ligation model, NT-702 at 5 and 10 mg/kg repeated oral doses twice a day (BID) for 13 days significantly improved the reduced walking distance while the lowered plantar surface temperature was improved at 2.5 mg/kg and more. Cilostazol also improved the walking distance and surface temperature at 300 mg/kg BID but significant difference was only observed for surface temperature on day 8. These results suggest that NT-702 can be expected to have therapeutic advantage for IC.  相似文献   

17.
A new series of quinazolines that function as CCR4 antagonists were discovered during the screening of our corporate compound libraries. Subsequent compound optimization elucidated the structure-activity relationships and led the identification of 2-(1,4'-bipiperidine-1'-yl)-N-cycloheptyl-6,7-dimethoxyquinazolin-4-amine 14a, which showed potent inhibition in the [(35)S]GTPgammaS-binding assay (IC(50)=18nM). This compound also inhibited the chemotaxis of human and mouse CCR4-expressing cells (IC(50)=140nM, 39nM).  相似文献   

18.
The discovery of potent N-hydroxyl caprolactam matrix metalloproteinase (MMP) inhibitors (6) based on the natural product Cobactin-T (2) is described. The synthetic method, which utilizes the ring closing metathesis reaction, is compatible to provide complementary (R) and (S) enantiomers. These compounds tested against MMP-2 and 9, show that the R stereochemistry (i.e., 16), which is opposite for that found in the natural product Cobactin-T is >1000-fold more active with IC(50) values of 0.2-0.6nM against both enzymes. The variation in the incorporation of the sulfonamide enzyme recognition element (Ar(2)XAr(1)SO(2)N(R(1)), 6), along with alterations in the RCM/double bond chemistry (R(2)) provided a series of sub nanomolar MMP inhibitors. For example, compounds 16 and 34 were found to be the most potent with IC(50) values against MMP-2 and MMP-9 found to be between 0.2 and 0.6nM with 34 being the most potent compound discovered (MMP-2 IC(50)=0.39nM and MMP-9 IC(50)=0.22nM). Compounds 16 and 34 showed acceptable drug-like properties in vivo with compound 34 showing oral bioavailability.  相似文献   

19.
In searching for a novel CCR3 receptor antagonist, we designed a library that included a variety of carboxamide derivatives based on the structure of our potent antagonists for human CCR1 and CCR3 receptors, and screened the new compounds for inhibitory activity against 125I-Eotaxin binding to human CCR3 receptors expressed in CHO cells. Among them, two 2-(benzothiazolethio)acetamide derivatives (1a and 2a) showed binding affinities with IC50 values of 750 and 1000 nM, respectively, for human CCR3 receptors. These compounds (1a and 2a) also possessed weak binding affinities for human CCR1 receptors. We selected la as a lead compound for derivatization to improve in vitro potency and selectivity for CCR3 over CCRI receptors. Derivatization of la by incorporating substituents into each benzene ring of the benzothiazole and piperidine side chain resulted in the discovery of a compound (1b) exhibiting 820-fold selectivity for CCR3 receptors (IC50 = 2.3 nM) over CCR1 receptors (IC50 = 1900 nM). This compound (1b) also showed potent functional antagonist activity for inhibiting Eotaxin (IC50 = 27 nM)- or RANTES (IC50 = 13 nM)-induced Ca2+ increases in eosinophils.  相似文献   

20.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号