首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Different bioremediation techniques (natural attenuation, biostimulation and bioaugmentation) in contaminated soils with two oily sludge concentrations (1.5% and 6.0%) in open and closed microcosms systems were assessed during 90 days. The results showed that the highest biodegradation rates were obtained in contaminated soils with 6% in closed microcosms. Addition of microbial consortium and nutrients in different concentrations demonstrated higher biodegradation rate of total petroleum hydrocarbons (TPH) than those of the natural attenuation treatment. Soils treated in closed microcosms showed highest removal rate (84.1 ± 0.9%) when contaminated at 6% and bacterial consortium and nutrients in low amounts were added. In open microcosms, the soil contaminated at 6% using biostimulation with the highest amounts of nutrients (C:N:P of 100:10:1) presented the highest degradation rate (78.7 ± 1.3%). These results demonstrate that the application of microbial consortium and nutrients favored biodegradation of TPH present in oily sludge, indicating their potential applications for treatment of the soils impacted with this important hazardous waste.  相似文献   

2.
This study focused on enhancing the bioremediation of soil contaminated with viscous oil by microorganisms and evaluating two strategies. Construction of microbial consortium and ultraviolet mutation were both effective applications in the remediation of soil contaminated with viscous oil. Results demonstrated that an interaction among the microorganisms existed and affected the biodegradation rate. Strains inoculated equally into the test showed the best remediation, and an optimal microbial consortium was achieved with a 7 days’ degradation rate of 49.22%. On the other hand, the use of ultraviolet mutation increased one strain’s degrading ability from 41.83 to 52.42% in 7 days. Gas chromatography and mass spectrum analysis showed that microbial consortium could treat more organic fractions of viscous oil, while ultraviolet mutation could be more effect on increasing one strain’s degrading ability.  相似文献   

3.
Leaks and spillages during the extraction, transport and storage of petroleum and its derivatives may result in environmental contamination. Biodiesel is an alternative energy source that can contribute to a reduction in environmental pollution. The aim of the present work was to evaluate biodegradation of diesel, biodiesel, and a 20% biodiesel-diesel mixture in oxisols from southern Brazil, using two bioremediation strategies: natural attenuation and bioaugmentation/biostimulation. Fuel biodegradation was monitored over 60 days by dehydrogenase activity, CO2 evolution and gas chromatography. The bacterial inoculum employed for bioaugmentation/biostimulation consisted of Bacillus megaterium, Bacillus pumilus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia and PCR-DGGE using 16S RNAr primers showed that some members of this consortium survived in the soil after 60 days. The biodegradation of pure biodiesel was higher for bioaugmentation/biostimulation than for natural attenuation, suggesting that the addition of the microbial consortium, together with adjustment of the macronutrient ratio, increased biodiesel degradation. The results of dehydrogenase and respiratory activity, together with GC analysis, suggested that the presence of biodiesel may, by stimulating general microbial degradative metabolism, increase the biodegradation of petroleum diesel. The microbial community was altered by both treatments, with natural attenuation producing a lower diversity index than the amended soil. The bioaugmentation/biostimulation strategy was showed to have a high potential for cleaning up soils contaminated with diesel and biodiesel blends.  相似文献   

4.
The effectiveness of bioremediation is often a function of the microbial population and how they can be enriched and maintained in an environment. Strategies for inexpensive in situ bioremediation of soil contaminated with petroleum hydrocarbons include stimulation of the indigenous microorganisms by introduction of nutrients (biostimulation) and/or through inoculation of an enriched mixed microbial culture into soil (bioaugmentation). To demonstrate the potential use of bioremediation in soil contaminated with kerosene, a laboratory study with the objective of evaluating and comparing the effects of bioattenuation, biostimulation, bioaugmentation, and combined biostimulation and bioaugmentation was performed. The present study dealt with the biodegradation of kerosene in soil under different bioremediation treatment strategies: bioattenuation, biostimulation, bioaugmentation, and combined biostimulation and bioaugmentation, respectively. Each treatment strategy contained 10% (w/w) kerosene in soil as a sole source of carbon and energy. After 5 weeks of remediation, the results revealed that bioattenuation, bioaugmentation, biostimulation, and combined biostimulation and bioaugmentation exhibited 44.1%, 67.8%, 83.1%, and 87.3% kerosene degradation, respectively. Also, the total hydrocarbon-degrading bacteria (THDB) count in all the treatments increased with time up till the second week after which it decreased. The highest bacterial growth was observed for combined biostimulation and bioaugmentation treatment strategy. A first-order kinetic model equation was fitted to the biodegradation data to further evaluate the rate of biodegradation and the results showed that the specific degradation rate constant (k) value was comparatively higher for combined biostimulation and bioaugmentation treatment strategy than the values for other treatments. Therefore, value of the kinetic parameter showed that the degree of effectiveness of these bioremediation strategies in the clean up of soil contaminated with kerosene is in the following order: bioattenuation < bioaugmentation < biostimulation < combined biostimulation and bioaugmentation. Conclusively, the present work has defined combined biostimulation and bioaugmentation treatment strategy requirements for kerosene oil degradation and thus opened an avenue for its remediation from contaminated soil.  相似文献   

5.
Soil activation, a concept based on the cultivation of biomass from a fraction of a comtaminated soil for subsequent use as an inoculum for bioaugmentation of the same soil, was studied as a method for the aerobic biodegradation of pentachlorophenol (PCP) and polycyclic hydrocarbons (PAH) in contaminated soils. A microbial consortium able to degrade PCP and PAH in contaminated soil from wood-preserving facilities was isolated and characterized for PCP degradation and resistance. To obtain an active consortium from the contaminated soil in a fed-batch bioreactor, the presence of soil as a support or source of nutrients was found to be essential. During the 35 days of bioreactor operation, residual PCP in solution remained near zero up to a loading rate of 700mg/l per day. The PCP meneralization rate increased from 70 mg/l per day when no PCP was added to the bioreactor to 700 mg/l per day at the maximum loading rate. The consortium tolerated a PCP concentration of 400 mg/l in batch experiments. Production of a PCP-degrading consortium in a fed-batch slurry bioreactor enhanced the activity of PCP biodegradation by a factor of ten. PAH biodegradation increased, during the same time period, by a factor of 30 and 81 for phenanthrene and pyrene, respectively. Preliminary laboratory-scale results indicated that a significant reduction in the time required for degradation of PCP and PAH in contaminated soil could be achieved using activated soil as an inoculum.Issued as NRC 33861 correspondence to: R. Samson  相似文献   

6.
Biodegradation and bioremediation of hydrocarbons in extreme environments   总被引:26,自引:0,他引:26  
Many hydrocarbon-contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, high salt concentrations, or high pressure, Hydrocarbon-degrading microorganisms, adapted to grow and thrive in these environments, play an important role in the biological treatment of polluted extreme habitats. The biodegradation (transformation or mineralization) of a wide range of hydrocarbons, including aliphatic, aromatic, halogenated and nitrated compounds, has been shown to occur in various extreme habitats. The biodegradation of many components of petroleum hydrocarbons has been reported in a variety of terrestrial and marine cold ecosystems. Cold-adapted hydrocarbon degraders are also useful for wastewater treatment. The use of thermophiles for biodegradation of hydrocarbons with low water solubility is of interest, as solubility and thus bioavailability, are enhanced at elevated temperatures. Thermophiles, predominantly bacilli, possess a substantial potential for the degradation of environmental pollutants, including all major classes. Indigenous thermophilic hydrocarbon degraders are of special significance for the bioremediation of oil-polluted desert soil. Some studies have investigated composting as a bioremediation process. Hydrocarbon biodegradation in the presence of high salt concentrations is of interest for the bioremediation of oil-polluted salt marshes and industrial wastewaters, contaminated with aromatic hydrocarbons or with chlorinated hydrocarbons. Our knowledge of the biodegradation potential of acidophilic, alkaliphilic, or barophilic microorganisms is limited.  相似文献   

7.
Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAH; naphthalene, anthracene and phenanthrene) degrading microbial consortium C2PL05 was obtained from a sandy soil chronically exposed to petroleum products, collected from a petrochemical complex in Puertollano (Ciudad Real, Spain). The consortium C2PL05 was highly efficient degrading completely naphthalene, phenanthrene and anthracene in around 18 days of cultivation. The toxicity (Microtox™ method) generated by the PAH and by the intermediate metabolites was reduced to levels close to non-toxic in almost 40 days of cultivation. The identified bacteria from the contaminated soil belonged to γ-proteobacteria and could be include in Enterobacter and Pseudomonas genus. DGGE analysis revealed uncultured Stenotrophomonas ribotypes as a possible PAH degrader in the microbial consortium. The present work shows the potential use of these microorganisms and the total consortium for the bioremediation of PAH polluted areas since the biodegradation of these chemicals takes place along with a significant decrease in toxicity.  相似文献   

9.
We studied the use of sequential batch reactors under oxygen limitation to improve and maintain consortium ability to biodegrade hydrocarbons. Air-agitated tubular reactors (2.5 L) were operated for 20 sequential 21-day cycles. Maya crude oil-paraffin mixture (13,000 mg/L) was used as the sole carbon source. The reactors were inoculated with a consortium from the rhizosphere of Cyperus laxus, a native plant that grows naturally in weathered, contaminated soil. Oxygen limitation was induced in the tubular reactor by maintaining low oxygen transfer coefficients (k(L)a < 20.6 h(-1)). The extent and biodegradation rates increased significantly up to the fourth cycle, maintaining values of about 66.33% and 460 mg x L(-1) x d(-1), respectively. Thereafter, sequential batch reactor operation exhibited a pattern with a constant general trend of biodegradation. The effect of oxygen limitation on consortium activity led to a low biomass yield and non-soluble metabolite (0.45 g SS/g hydrocarbons consumed). The average number of hydrocarbon-degrading microorganisms increased from 6.5 x 10(7) (cycles 1-3) to 2.2 x 10(8) (cycles 4-20). Five bacterial strains were identified: Achromobacter (Alcaligenes) xylosoxidans, Bacillus cereus, Bacillus subtilis, Brevibacterium luteum, and Pseudomonas pseudoalcaligenes. Asphaltene-free total petroleum hydrocarbons, extracted from a weathered, contaminated soil, were also biodegraded (97.1 mg x L(-1) x d(-1)) and mineralized (210.48 mg CO2 x L(-1) x d(-1)) by the enriched consortium without inhibition. Our results indicate that sequential batch reactors under oxygen limitation can be used to produce consortia with high and constant biodegradation ability for industrial applications of bioremediation.  相似文献   

10.
ABSTRACT

Petroleum tar produced during the processing of crude oil is one of the earth's major pollutants. The potential of certain soil bacteria in the biodegradation of petroleum tar was assessed to develop an active indigenous bacterial consortium for bioremediation of petroleum tar–polluted sites of Assam, India. In vitro enrichment cultures of five Pseudomonas spp. were found to metabolize petroleum tar. The Fourier transform infrared (FTIR) analyses of the enrichment cultures revealed the presence of the functional groups, viz., –OH, –CHO, C?O, and –COOH, which provided evidence for the biodegradation of petroleum tar. Further, gas chromatography–flame ionization detection (GC-FID) analyses revealed complete degradation of low-molecular-weight hydrocarbons, and the subsequent appearance of some additional peaks reflected the formation of intermediate metabolites during the degradation of petroleum tar. A mixed culture with 0.1% Tween 80 as a surfactant exhibited almost complete degradation in contrast to the degradation by the mixed culture without Tween 80. This confirmed the effect of a surfactant for acceleration of the biodegradation process of petroleum tar.  相似文献   

11.
Contaminated soils are subject to diurnal and seasonal temperature variations during on‐site ex‐situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon‐contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5‐15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10–C16 hydrocarbons in the VART5‐15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene‐harbouring communities in VART5‐15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions.  相似文献   

12.
The use of pyrolyzed carbon, biochar, as a soil amendment is of potential interest for improving phytoremediation of soil that has been contaminated by petroleum hydrocarbons. To examine this question, the research reported here compared the effects of biochar, plants (mesquite tree seedlings), compost and combinations of these treatments on the rate of biodegradation of oil in a contaminated soil and the population size of oil-degrading bacteria. The presence of mesquite plants significantly enhanced oil degradation in all treatments except when biochar was used as the sole amendment without compost. The greatest extent of oil degradation was achieved in soil planted with mesquite and amended with compost (44% of the light hydrocarbon fraction). Most probable number assays showed that biochar generally reduced the population size of the oil-degrading community. The results of this study suggest that biochar addition to petroleum-contaminated soils does not improve the rate of bioremediation. In contrast, the use of plants and compost additions to soil are confirmed as important bioremediation technologies.  相似文献   

13.
嗜盐微生物在环境修复中的研究进展   总被引:3,自引:1,他引:3  
人类活动产生的污染物,使一些天然盐环境遭受不同程度的污染,或者使环境受到污染物与高盐的双重污染。在高盐条件下,非嗜盐微生物的代谢会受到抑制,其生物修复效率明显降低,甚至丧失修复能力。嗜盐微生物则能够在高盐环境中栖息繁殖,凸显其修复被污染高盐环境的生物学效率和广阔的应用前景。就嗜盐微生物降解石油烃、芳香烃衍生物和有机磷等污染物的研究进展进行了综述和讨论。  相似文献   

14.
The purpose of the present study was to provide new methods that would increase the rates of biodegradation of petroleum hydrocarbons in soil, thus reducing the time required to achieve a satisfactory level of residual hydrocarbon in an ex situ bioremediation. Results of laboratory studies on several techniques were used to guide our implementation of these methods in controlled field studies. Soils contaminated with nonvolatile hydrocarbons were treated with various combinations of (1) an anionic surfactant guanidinium cocoate (CGS), (2) a consortium of hydrocarbon‐degrading microorganisms, (3) a slow‐release form of nitrogen:urea, and (4) the bulking agent vermiculite. Laboratory results describing the activity of CGS have been presented previously (Jain et al., 1992). The amount and rate of hydrocarbon loss in treated soil was compared with hydrocarbon lost in soil that received no amendment other than water (water only). We also used a sheen screen method (Nelson et al., 1995), to assess the effectiveness of our field application of microorganisms.  相似文献   

15.
Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.  相似文献   

16.
The purpose of the present study was to investigate possible methods to enhance the rate of biodegradation of oil sludge from crude oil tank bottom, thus reducing the time usually required for bioremediation. Enhancement of biodegradation was achieved through bioaugmentation and biostimulation. About 10% and 20% sludge contaminated sterile and non-sterile soil samples were treated with bacterial consortium (BC), rhamnolipid biosurfactant (RL) and nitrogen, phosphorus and potassium (NPK) solution. Maximum n-alkane degradation occurred in the 10% sludge contaminated soil samples. The effects of treatment carried out with the non-sterile soil samples were more pronounced than in the sterile soils. Maximum degradation was achieved after the 56th day of treatment. n-Alkanes in the range of nC8-nC11 were degraded completely followed by nC12-nC21, nC22-nC31 and nC32-nC40 with percentage degradations of 100%, 83-98%, 80-85% and 57-73% respectively. Statistical analysis using analysis of variance and Duncan's multiple range test revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, protein concentration and surface tension at a 1% probability level. All tested additives BC, NPK and RL had significant positive effects on the bioremediation of n-alkane in petroleum sludge.  相似文献   

17.
Microbial communities in oil-contaminated seawater   总被引:14,自引:0,他引:14  
Although diverse bacteria capable of degrading petroleum hydrocarbons have been isolated and characterized, the vast majority of hydrocarbon-degrading bacteria, including anaerobes, could remain undiscovered, as a large fraction of bacteria inhabiting marine environments are uncultivable. Using culture-independent rRNA approaches, changes in the structure of microbial communities have been analyzed in marine environments contaminated by a real oil spill and in micro- or mesocosms that mimic such environments. Alcanivorax and Cycloclasticus of the gamma-Proteobacteria were identified as two key organisms with major roles in the degradation of petroleum hydrocarbons. Alcanivorax is responsible for alkane biodegradation, whereas Cycloclasticus degrades various aromatic hydrocarbons. This information will be useful to develop in situ bioremediation strategies for the clean-up of marine oil spills.  相似文献   

18.
微生物修复作为一种新型环保的生物修复技术,已成为海洋石油污染生物修复的核心技术。对海洋石油降解微生物的种类即细菌、蓝藻、真菌以及藻类进行了总结,对微生物对石油烃的降解途径与降解机理进行了综述。微生物降解烷烃的过程包括末端氧化、烷基氢过氧化物以及环己烷降解3种形式。微生物对芳香烃的降解是通过芳香烃被氧化酶氧化导致苯环开环来实现的。微生物对多环芳烃的降解是在单加氧酶或双加氧酶的催化作用下被最终降解为二氧化碳和水而被分解。并对影响石油烃降解微生物的因素包括温度、营养物质等因素进行了分析。  相似文献   

19.
Soil and sediments are contaminated with petroleum hydrocarbons in many parts of the world. Anaerobic degradation of petroleum hydrocarbon is very relevant in removing oil spills in the anaerobic zones of soil and sediments. This research investigates the possibility of degrading no. diesel fuel under anaerobic conditions. Anaerobic packed soil columns were used to simulate and study in situ bioremediation of soil contaminated with diesel fuel. Several anaerobic conditions were evaluated in soil columns, including sulfate reducing, nitrate reducing, methanogenic, and mixed electron acceptor conditions. The objectives were to determine the extent of diesel fuel degradation in soil columns under various anaerobic conditions and identify the best conditions for efficient removal of diesel fuel. Diesel fuels were degraded significantly under all conditions compared to no electron supplemented soil column (natural attenuation). However, the rate of diesel degradation was the highest under mixed electron acceptor conditions followed in order by sulfate reducing, nitrate reducing, and methanogenic conditions. Under mixed electron acceptor condition 81% of diesel fuel was degraded within 310 days. While under sulfate reducing condition 54.5% degradation of diesel fuel was observed for the same period. This study showed evidence for diesel fuel metabolism in a mixed microbial population system similar to any contaminated field sites, where heterogeneous microbial population exists.  相似文献   

20.
不同类型原油污染土壤生物修复技术研究   总被引:15,自引:4,他引:15  
对不同类型原油污染土壤在实用规模的预制床上采用堆制技术进行生物修复 .通过投加肥料、菌剂、控制水分和pH ,可使微生物获得较好的生态环境 .当稀油、高凝油、特稠油和稠油污染的土壤中原油总量为 2 5 .8~ 77.2 g·kg-1土时 ,经过近 2个月的运行 ,石油总量的去除率可达 38.37%~ 5 6 .74 % .石油中芳烃、沥青和胶质混合物是制约石油快速降解的主要因素 .在处理过程中筛选出石油降解的优势菌株 ,其中有 6株真菌、6株细菌和 1株放线菌 .研究结果为石油污染土壤异位生物修复技术实用化提供了理论依据 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号