首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular protein quality control involves a close interplay between molecular chaperones and the ubiquitin/proteasome system. We recently identified a degradation pathway, on which the chaperone Hsc70 delivers chaperone clients, such as misfolded forms of the cystic fibrosis transmembrane conductance regulator (CFTR), to the proteasome. The cochaperone CHIP is of central importance on this pathway, because it acts as a chaperone-associated ubiquitin ligase. CHIP mediates the attachment of a ubiquitin chain to a chaperone-presented client protein and thereby stimulates its proteasomal degradation. To gain further insight into the function of CHIP we isolated CHIP-containing protein complexes from human HeLa cells and analyzed their composition by peptide mass fingerprinting. We identified the Hsc70 cochaperone BAG-2 as a main component of CHIP complexes. BAG-2 inhibits the ubiquitin ligase activity of CHIP by abrogating the CHIP/E2 cooperation and stimulates the chaperone-assisted maturation of CFTR. The activity of BAG-2 resembles that of the previously characterized Hsc70 cochaperone and CHIP inhibitor HspBP1. The presented data therefore establish multiple mechanisms to control the destructive activity of the CHIP ubiquitin ligase in human cells.  相似文献   

2.
Sulfonylureas are used in the treatment of non-insulin-dependent diabetes mellitus. Little is known, however, about their effects on cholesterol metabolism. We tested in the present study the effects of glibenclamide (GB) on cholesterol esterification (CE) in macrophage-derived cells. GB inhibited intracellular accumulation of CE induced by acetylated LDL or oxidized LDL in J774 cells, but no such effect on total cholesterol, suggesting that the target of GB was acyl-CoA:cholesterol acyltransferase (ACAT). In the cell-free reconstitution ACAT assay, GB inhibited the ACAT activity with an IC(50) value of 20 microM. Furthermore, GB effectively inhibited the ACAT activity of PMA-stimulated THP-1 cells to the undifferentiated level of THP-1. In the whole-cell ACAT assay using CHO cells overexpressed with ACAT-1 or ACAT-2, GB inhibited the activity of both isozymes with similar potency. Our in vitro data suggest that sulfonylurea could be a potential seed for a new generation of ACAT inhibitors.  相似文献   

3.
4.
Cytochalasin D abolishes the schistosomicidal activity of praziquantel   总被引:3,自引:0,他引:3  
To test the hypothesis that calcium channels of schistosomes are the targets for the action of praziquantel, we subjected schistosomes in vitro to pharmacological agents capable of interfering with the functioning of calcium channels. After 1-h exposure to these agents, praziquantel was added and incubation continued overnight. Worms were then washed, resuspended in drug-free medium and observed during the following 7-10 days. About 50% of schistosomes pre-exposed to the calcium channel blockers nicardipine and nifedipine were able to survive a praziquantel concentration (3 microM) that normally killed the majority of adult male worms. Since the organization of the actin cytoskeleton controls the activity of calcium channels in a number of different systems, we also pre-exposed schistosomes to the actin depolymerizing agent cytochalasin D. This treatment rendered the parasites completely refractory to the effects of very high praziquantel levels (up to 36 microM). These results are consistent with the hypothesis that schistosome calcium channels are involved in the mechanism of action of praziquantel.  相似文献   

5.
DNA mimic proteins are unique factors that control the DNA binding activity of target proteins by directly occupying their DNA binding sites. The extremely divergent amino acid sequences of the DNA mimics make these proteins hard to predict, and although they are likely to be ubiquitous, to date, only a few have been reported and functionally analyzed. Here we used a bioinformatic approach to look for potential DNA mimic proteins among previously reported protein structures. From ∼14 candidates, we selected the Staphylococcus conserved hypothetical protein SSP0047, and used proteomic and structural approaches to show that it is a novel DNA mimic protein. In Staphylococcus aureus, we found that this protein acts as a uracil-DNA glycosylase inhibitor, and therefore named it S. aureus uracil-DNA glycosylase inhibitor (SAUGI). We also determined and analyzed the complex structure of SAUGI and S. aureus uracil-DNA glycosylase (SAUDG). Subsequent BIAcore studies further showed that SAUGI has a high binding affinity to both S. aureus and human UDG. The two uracil-DNA glycosylase inhibitors (UGI and p56) previously known to science were both found in Bacillus phages, and this is the first report of a bacterial DNA mimic that may regulate SAUDG’s functional roles in DNA repair and host defense.  相似文献   

6.
When cell-wall invertase (CWI) from Nicotiana tabacum L. cell-suspension cultures, either non-transformed or transformed with Agrobacterium tumefaciens, was salt-eluted from intact cells and purified on Sulfopropyl-Sephadex (SPS) by pH-gradient elution, the enzyme lost about 50% of its activity during a 1-h incubation at pH 4.8. However, Western-blot analysis indicated no appreciable enzyme degradation. Re-chromatography of CWI peak fractions on SPS using NaCl-gradient elution showed the presence of a 17-kDa peptide (p17) in fractions with low CWI activity but strong CWI immunosignal (Weil and Rausch 1994, Planta 193, 430–437). When separating CWI from p17 by Concanavalin A (Con A)-Sepharose chromatography, inhibition could be restored by incubating the inhibitor-containing fraction with inhibitor-free CWI. More than 90% of CWI could be inhibited, suggesting that all CWI was susceptible to p17 binding. The presence of divalent metal ions (Ca2+, Mg2+, Zn2+) during pre-incubation of CWI with p17 reduced CWI inhibition substantially. Also, sucrose protected CWI against inhibition by p17 (half-maximum protection at 1.3 mM). Binding of p17 to CWI during a 1-h pre-incubation was pH-dependent, pH 4.5 causing maximum inhibition, whereas at pH 6.5 no inhibition was observed. Gel-permeation chromatography revealed that the native inhibitor acts as a monomer. Immunoprecipitation of CWI co-precipitated p17, confirming direct binding of p17 to CWI. When fractions containing CWI and p17 were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and subsequent Western blotting a diffuse immunosignal of 86–90 kDa was observed (in addition to the prominent CWI signal at 69 kDa). Equilibration of this zone with urea-containing sample buffer prior to a second SDS-PAGE run resulted in a strong immunosignal at 87 (± 2) kDa, suggesting that during one step in the formation of the p17-CWI complex the two polypeptides became firmly aggregated. The distribution of CWI and glucose-6-phosphate dehydrogenase activities between the cell-wall protein fraction and salt-eluted cells shows that cells retained their structural integrity, thus indicating co-localization of p17 and CWI in situ (Weil and Rausch 1994). We have purified p17 to homogeneity and its N-terminus has been sequenced, revealing no similarity to other known protein sequences. Possible physiological roles of p17 are discussed.Abbreviations Con A concanavalin A - CWI cell-wall invertase - 1-OMG methyl -d-glucopyranoside - p17 17-kDa peptide - PMSF phenylmethylsulfonyl fluoride - PR pathogenesis related This work was supported by a grant from the Deutsche Forschungsgemeinschaft. The antiserum against the deglycosylated carrot cell-wall invertase was a gift from Dr. Sturm (Friedrich-Miescher-Institut, Basel, Switzerland). The antiserum against acidic tobacco PR1 proteins was obtained from Dr. Lotan (Weizmann Institute of Science, Rehovot, Israel). The antiserum against tomato hsp17 was a gift from Prof. Nover (J.-W.-Goethe-Universität, Frankfurt, Germany).  相似文献   

7.
Choo YM  Lee KS  Yoon HJ  Qiu Y  Wan H  Sohn MR  Sohn HD  Jin BR 《PloS one》2012,7(2):e32269
Bee venom is a rich source of pharmacologically active substances. In this study, we identified a bumblebee (Bombus ignitus) venom Kunitz-type serine protease inhibitor (Bi-KTI) that acts as a plasmin inhibitor. Bi-KTI showed no detectable inhibitory effect on factor Xa, thrombin, or tissue plasminogen activator. In contrast, Bi-KTI strongly inhibited plasmin, indicating that it acts as an antifibrinolytic agent; however, this inhibitory ability was two-fold weaker than that of aprotinin. The fibrin(ogen)olytic activities of B. ignitus venom serine protease (Bi-VSP) and plasmin in the presence of Bi-KTI indicate that Bi-KTI targets plasmin more specifically than Bi-VSP. These findings demonstrate a novel mechanism by which bumblebee venom affects the hemostatic system through the antifibrinolytic activity of Bi-KTI and through Bi-VSP-mediated fibrin(ogen)olytic activities, raising interest in Bi-KTI and Bi-VSP as potential clinical agents.  相似文献   

8.
9.
Gastric lesions are known to be caused by stress. Corticotropin-releasing factor (CRF) is a key peptide initiating various stress response. This study was designed to investigate how brain CRF is involved in the occurrence of stress-induced gastric erosion in rats. Intracerebroventricular (icv) administration of CRF suppressed the occurrence of gastric erosion induced by water-immersion restraint stress, and its suppressive effect was blocked by coadministration of a CRF receptor antagonist in rats. The peripheral administration of CRF had no influence on the occurrence of erosion. The icv administration of a CRF receptor antagonist or anti-rat CRF gamma-globulin increased gastric erosion induced by the stress. Ganglionic blockade with chlorisondamine, muscarinic blockade with atropine, or bilateral adrenalectomy by itself significantly inhibited the occurrence of stress-induced gastric erosion, and no additional effect of CRF on these treatments-induced inhibition of erosion was found. These results, therefore, suggest that the occurrence of stress-induced gastric erosion is mediated by the autonomic nervous system- and adrenal-dependent pathway, and that brain CRF reduces the occurrence of stress-induced gastric lesions by acting on its specific receptor within the central nervous system, probably through the autonomic nervous system- and adrenal-dependent mechanism.  相似文献   

10.
Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca2+ dynamics by controlling IP3 receptor (IP3R) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IP3Rs and preventing pro-apoptotic Ca2+ release and Bcl-xL sensitizing IP3Rs to low [IP3] and promoting pro-survival Ca2+ oscillations. We here demonstrate that Bcl-xL too inhibits IP3R-mediated Ca2+ release by interacting with the same IP3R regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2’s IP3R-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IP3R and abrogated Bcl-xL’s inhibitory effect on IP3Rs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xLK87D, suppressed IP3R single-channel openings stimulated by sub-maximal and threshold [IP3]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IP3Rs contributes to its anti-apoptotic properties against Ca2+-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca2+ elevations in wild-type but not in IP3R-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca2+ signals and cell death, while Bcl-xLK87D was much less effective in doing so. In the absence of IP3Rs, Bcl-xL and Bcl-xLK87D were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IP3R activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IP3R-mediated Ca2+ release and increased the sensitivity towards STS, without altering the ER Ca2+ content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca2+-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IP3R-mediated Ca2+ release and IP3R-driven cell death. Our work further underpins that IP3R inhibition is an integral part of Bcl-xL’s anti-apoptotic function.Subject terms: Cancer, Cell biology, Molecular biology  相似文献   

11.
12.
Thiolsubtilisin acts as an acetyltransferase in organic solvents   总被引:1,自引:0,他引:1  
Tai DF  Liaw WC 《FEBS letters》2002,517(1-3):24-26
The catalytic mechanism of arylamine N-acetyltransferase has been proposed to involve Cys-His-Asp as its catalytic triad. Thiolsubtilisin, a chemically modified enzyme that has a catalytic triad of Cys-His-Asp at the active site, mimics the catalysis of arylamine N-acetyltransferase, serotonin N-acetyltransferase, histone N-acetyltransferase and amino acid N-acetyltransferase. Thiolsubtilisin not only can catalyze amino acid transacetylation, but is also able to catalyze amine transacetylation. Ethyl acetate was used as the acylating reagent to form N-acetyl amino acids and amines in organic solvents with moderate yield. Hence, these findings broaden our understanding of the structural features required for N-acetyltransferases activity as well as provide a structural relationship between cysteine protease and other N-acyltransferases.  相似文献   

13.
14.
15.
It is generally thought that sedimenting plastids are responsible for gravity sensing in higher plants. We directly tested the model generated by the current statolith hypothesis that the gravity sensing that leads to gravitropism results from an interaction between the plastids and actin microfilaments. We find that the primary roots of rice, corn, and cress undergo normal gravitropism and growth even when exposed to cytochalasin D, a disruptor of actin microfilaments. These results indicate that an interaction between amyloplasts and the actin cytoskeleton is not critical for gravity sensing in higher plants and weaken the current statolith hypothesis.  相似文献   

16.
Vascular smooth muscle is a major structural element of the arterial wall. We examined the effects of cytoskeleton destruction, after administration of Cytochalasin D, on the biomechanical properties of porcine common carotids. Compared to untreated, maximally dilated controls, Cytochalasin D-treated arteries have shown a marked increase in compliance in the elastin-dominated pressure range. After weakening the VSM stress-bearing cytoskeleton by Cytochalasin D the artery would expand, reaching a new equilibrium state. This study brings further evidence that VSM is under tension, even when it is under zero load and at maximal vasodilation. This residual tension was released upon partial destruction of the cytoskeleton with Cytochalasin D. From a biomechanical standpoint, this means that the zero stress states of the in-series and parallel elastic components are substantially different.  相似文献   

17.
杆状病毒感染引起宿主细胞肌动蛋白骨架的构象变化 ,使之形成缆绳结构 .棉铃虫核型多角体病毒 (HaNPV)的衣壳蛋白也能使宿主昆虫的肌动蛋白发生凝聚 ,用细胞松弛素D抑制宿主肌动蛋白形成纤丝结构 ,病毒感染Hz AM1,空斑计数表明 ,0 1μg/ml细胞松弛素D可使棉铃虫核型多角体病毒的增殖下降 10 4倍 ,细胞松弛素D浓度增高到 0 5 μg/ml则测不到子代病毒粒子 .Western印迹分析表明 ,细胞松弛素D并不影响受染细胞中肌动蛋白的含量 .斑点印迹 (dotblot)也表明 ,病毒DNA的合成也没有受到影响 ,推测宿主细胞的肌动蛋白纤丝结构与病毒的复制有关 .在电子显微镜下观察超薄切片发现 ,在 0 5 μg/ml细胞松弛素D处理细胞中形成的病毒粒子形态与正常形态明显不同 ,提示细胞松弛素D抑制HaNPV的增殖是由于抑制病毒组装成完整有感染性的病毒粒子 .从而可以认为宿主昆虫细胞的丝状肌动蛋白对子代病毒的复制和组装是必需的 .  相似文献   

18.
Neuropathic pain, resulting from somatosensory nervous system dysfunction, remains a serious public health problem worldwide. microRNAs are involved in the physiological processes of neuropathic pain. However, the biological roles of miR-98 in neuropathic pain development have not been investigated. Therefore, in our current study, we focused on the effects of miR-98 in neuropathic pain. It was shown that miR-98 was significantly downregulated in chronic sciatic nerve injury (CCI) rat models. In addition, high mobility group A2 (HMGA2) was obviously upregulated in CCI rats. Overexpression of miR-98 inhibited neuropathic pain progression, including mechanical and thermal hyperalgesia. By a bioinformatics analysis, HMGA2 was predicted as a direct target of miR-98. The negative correlation between miR-98 and HMGA2 was validated in our present study. Furthermore, overexpression of miR-98 dramatically repressed HMGA2 protein and messenger RNA (mRNA) expression. Neuroinflammation participates in neural-immune interactions, which can contribute to the neuropathic pain development. Meanwhile, we found that inflammatory cytokine (interleukin [IL]-6, IL-1β, and COX-2) protein expression in rats infected with LV-miR-98 was greatly suppressed. Taking these results together, we concluded that miR-98 might depress neuropathic pain development through modulating HMGA2.  相似文献   

19.
PyrH is a member of the UMP kinase family that catalyses the conversion of UMP to UDP, an essential step in the pyrimidine metabolic pathway in a variety of bacteria including those causing community-acquired respiratory tract infections (RTIs). In this study, we have developed a luminescence-based kinase assay of PyrH and evaluated the inhibitory activity of PYRH-1 (sodium {3-[4-tert-butyl-3-(9H-xanthen-9-ylacetylamino)phenyl]-1-cyclohexylmethylpropoxycarbonyloxy}acetate). PYRH-1 inhibits PyrH derived from both Streptococcus pneumoniae and Haemophilus influenzae with IC(50) (concentration of inhibitor giving a 50% decrease in enzyme activity) values of 48 and 75?μM, respectively, whose inhibitory activity against S.?pneumoniae PyrH was far higher compared with that of UTP (IC(50) =?710?μM), an allosteric PyrH inhibitor. The molecular interaction analysis by surface plasmon resonance suggested that PYRH-1 directly interacts with S.?pneumoniae PyrH at one-to-one molar ratio. Finally, PYRH-1 was shown to have antimicrobial activity against several different bacteria causing RTIs, such as S.?pneumoniae, Staphylococcus aureus, H.?influenzae (acrA knockout strain), suggesting that PYRH-1 is a prototype chemical compound that can be harnessed as an antimicrobial drug with a novel mode of action by targeting bacterial PyrH.  相似文献   

20.
Porcine pepsin A, a gastric aspartic peptidase, is initially produced as the zymogen pepsinogen that contains an N-terminal, 44 residue prosegment (PS) domain. In the absence of the PS, native pepsin (Np) is irreversibly denatured and when placed under refolding conditions, folds to a thermodynamically stable denatured state. This denatured, refolded pepsin (Rp) state can be converted to Np by the exogenous addition of the PS, which catalyzes the folding of Rp to Np. In order to thoroughly study the mechanism by which the PS catalyzes pepsin folding, a soluble protein expression system was developed to produce recombinant PS peptide in a highly pure form. Using this system, the wild-type and three-mutant PS forms, in which single residue substitutions were made (V4A, R8A and K36A), were expressed and purified. These PS peptides were characterized for their ability to inhibit Np enzymatic activity and to catalyze the folding of Rp to Np. The V4A, R8A and K36A mutant PS peptides were found to have nanomolar inhibition constants, Ki, of 82.4, 58.3 and 95.6 nM, respectively, approximately a two-fold increase from that of the wild-type PS (36.2 nM). All three-mutant PS peptides were found to catalyze Np folding with a rate constant of 0.06 min? 1, five-fold lower than that of the wild-type. The observation that the mutant PS peptides retained their inhibition and folding-catalyst functionality suggests a high level of resilience to mutations of the pepsin PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号