首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SRPK2 belongs to a family of serine/arginine (SR) protein-specific kinases (SRPKs), which phosphorylate SR domain-containing proteins in the nuclear speckles and mediate the pre-mRNA splicing. Previous studies have shown that SRPK2 plays a pivotal role in cell proliferation and apoptosis. However, how SRPK2 is regulated during the apoptosis is unclear. Here, we show that SRPK2 is cleaved by caspases at Asp-139 and -403 residues. Its N terminus cleaved product translocates into the nucleus and promotes VP16-induced apoptosis. Akt phosphorylation of SRPK2 prevents its apoptotic cleavage by caspases. 14-3-3β, the binding partner of Akt-phosphorylated SRPK2, further protects it from degradation. Hence, our results suggest that the N-terminal domain of SRPK2 cleaved by caspases translocates into the nucleus, where it promotes chromatin condensation and apoptotic cell death.  相似文献   

2.
Abstract. Reversible phosphorylation plays an important role in pre-mRNA splicing in mammalian cells. Two kinases, SR protein-specific kinase (SRPK1) and Clk/Sty, have been shown to phosphorylate the SR family of splicing factors. We report here the cloning and characterization of SRPK2, which is highly related to SRPK1 in sequence, kinase activity, and substrate specificity. Random peptide selection for preferred phosphorylation sites revealed a stringent preference of SRPK2 for SR dipeptides, and the consensus derived may be used to predict potential phosphorylation sites in candidate arginine and serine-rich (RS) domain–containing proteins. Phosphorylation of an SR protein (ASF/SF2) by either SRPK1 or 2 enhanced its interaction with another RS domain–containing protein (U1 70K), and overexpression of either kinase induced specific redistribution of splicing factors in the nucleus. These observations likely reflect the function of the SRPK family of kinases in spliceosome assembly and in mediating the trafficking of splicing factors in mammalian cells. The biochemical and functional similarities between SRPK1 and 2, however, are in contrast to their differences in expression. SRPK1 is highly expressed in pancreas, whereas SRPK2 is highly expressed in brain, although both are coexpressed in other human tissues and in many experimental cell lines. Interestingly, SRPK2 also contains a proline-rich sequence at its NH2 terminus, and a recent study showed that this NH2-terminal sequence has the capacity to interact with a WW domain protein in vitro. Together, our studies suggest that different SRPK family members may be uniquely regulated and targeted, thereby contributing to splicing regulation in different tissues, during development, or in response to signaling.  相似文献   

3.
The serine- and arginine-rich (SR) splicing factors play an important role in both constitutive and alternative pre-mRNA splicing, and the functions of these splicing factors are regulated by phosphorylation. We have previously characterized SRPK1 (SFRSK1) and SRPK2 (SFRSK2), which are highly specific protein kinases for the SR family of splicing factors. Here we report the chromosomal localization of the mouse and human genes for both kinases. SRPK1 probes detected two loci that were mapped to mouse Chromosomes 17 and X using The Jackson Laboratory interspecific backcross DNA panel, and SRPK2 probes identified a single locus on mouse Chromosome 5. Using a somatic cell hybrid mapping panel and by fluorescence in situ hybridization, SRPK1 and SRPK2 were respectively mapped to human chromosomes 6p21.2-p21.3 (a region of conserved synteny to mouse Chromosome 17) and 7q22-q31.1 (a region of conserved synteny to mouse Chromosome 5). In addition, we also found multiple SRPK-related sequences on other human chromosomes, one of which appears to correspond to a SRPK2 pseudogene on human chromosome 8.  相似文献   

4.
Reversible phosphorylation of the SR family of splicing factors plays an important role in pre-mRNA processing in the nucleus. Interestingly, the SRPK family of kinases specific for SR proteins is localized in the cytoplasm, which is critical for nuclear import of SR proteins in a phosphorylation-dependent manner. Here, we report molecular dissection of the mechanism involved in partitioning SRPKs in the cytoplasm. Common among all SRPKs, the bipartite kinase catalytic core is separated by a unique spacer sequence. The spacers in mammalian SRPK1 and SRPK2 share little sequence homology, but they function interchangeably in restricting the kinases in the cytoplasm. Removal of the spacer in SRPK1 had little effect on the kinase activity, but it caused a quantitative translocation of the kinase to the nucleus and consequently induced aggregation of splicing factors in the nucleus. Rather than carrying a nuclear export signal as suggested previously, we found multiple redundant signals in the spacer that act together to anchor the kinase in the cytoplasm. Interestingly, a cell cycle signal induced nuclear translocation of the kinase at the G2/M boundary. These findings suggest that SRPKs may play an important role in linking signaling to RNA metabolism in higher eukaryotic cells.  相似文献   

5.
6.
7.
Assembly of the spliceosome requires the participation of SR proteins, a family of splicing factors rich in arginine-serine dipeptide repeats. The repeat regions (RS domains) are polyphosphorylated by the SRPK and Clk/Sty families of kinases. The two families of kinases have distinct enzymatic properties, raising the question of how they may work to regulate the function of SR proteins in RNA metabolism in mammalian cells. Here we report the first mass spectral analysis of the RS domain of ASF/SF2, a prototypical SR protein. We found that SRPK1 was responsible for efficient phosphorylation of a short stretch of amino acids in the N-terminal portion of the RS domain of ASF/SF2 while Clk/Sty was able to transfer phosphate to all available serine residues in the RS domain, indicating that SR proteins may be phosphorylated by different kinases in a stepwise manner. Both kinases bind with high affinity and use fully processive catalytic mechanisms to achieve either restrictive or complete RS domain phosphorylation. These findings have important implications on the regulation of SR proteins in vivo by the SRPK and Clk/Sty families of kinases.  相似文献   

8.
SRPK1 and LBR protein kinases show identical substrate specificities   总被引:3,自引:0,他引:3  
Arginine/serine protein kinases constitute a novel class of enzymes that can modify arginine/serine (RS) dipeptide motifs. SR splicing factors that are essential for pre-mRNA splicing and the lamin B receptor (LBR), an integral protein of the inner nuclear membrane, are among the best characterized proteins that contain RS domains. Two SR Protein-specific Kinases, SRPK1 and SRPK2, have been shown to phosphorylate specifically the RS motifs of the SR family of splicing factors and play an important role in regulating both the spliceosome assembly and their intranuclear distribution, whereas an LBR-associated kinase, that specifically phosphorylates a stretch of RS repeats located at the NH2-terminal region of LBR, has been recently purified and characterized from turkey erythrocyte nuclear envelopes. Using synthetic peptides representing different regions of LBR and recombinant proteins produced in bacteria we now demonstrate that SRPK1 modifies LBR with similar kinetics and on the same sites as the LBR kinase, that are also phosphorylated in vivo. These data provide significant evidence for a new role of SRPK1 in addition to that of pre-mRNA splicing.  相似文献   

9.
10.
Paraquat (PQ) is a neurotoxic herbicide that induces superoxide formation. Although it is known that its toxic properties are linked to ROS production, the cellular response to PQ is still poorly understood. We reported previously that treatment with PQ induced genome-wide changes in pre-mRNA splicing. Here, we investigated the molecular mechanism underlying PQ-induced pre-mRNA splicing alterations. We show that PQ treatment leads to the phosphorylation and nuclear accumulation of SRPK2, a member of the family of serine/arginine (SR) protein-specific kinases. Concomitantly, we observed increased phosphorylation of SR proteins. Site-specific mutagenesis identified a single serine residue that is necessary and sufficient for nuclear localization of SRPK2. Transfection of a phosphomimetic mutant modified splice site selection of the E1A minigene splicing reporter similar to PQ-treatment. Finally, we found that PQ induces DNA damage and vice versa that genotoxic treatments are also able to promote SRPK2 phosphorylation and nuclear localization. Consistent with these observations, treatment with PQ, cisplatin or γ-radiation promote changes in the splicing pattern of genes involved in DNA repair, cell cycle control, and apoptosis. Altogether, our findings reveal a novel regulatory mechanism that connects PQ to the DNA damage response and to the modulation of alternative splicing via SRPK2 phosphorylation.  相似文献   

11.
Protein kinases are important regulators in biologic processes. Aberrant expression of protein kinases often causes diseases including cancer. In the present study, we found that the serine-arginine protein kinase 1 (SRPK1) might be involved in hepatocellular carcinoma (HCC) proliferation from a kinome screen using a loss-of-function approach. In clinical samples, SRPK1 was frequently up-regulated in HCCs as compared with adjacent non-tumor tissues at both mRNA and protein levels. Functional studies indicated that overexpression of wild-type SRPK1 promoted HCC cell proliferation, while forced expression of the kinase-dead mutant of SRPK1 or RNA interference against SRPK1 suppressed cell growth and malignancy as measured in soft agar assay. The kinase-dead mutant of SRPK1 also inhibited subcutaneous xenografts’ growth of HCC cells in nude mice. Furthermore, western bolt analysis showed overexpression of wild-type SRPK1 enhanced Akt phosphorylation and knockdown of SRPK1 by RNA interference attenuated Akt phosphorylation induced by epidermal growth factor. Meanwhile, overexpression of wild-type SRPK1 also induced a concurrent increase in the total tyrosine phosphorylation of phosphotidylinositol-3 kinase p110α subunit, indicating a functional link between SRPK1 and PI3K/Akt signaling. Our findings suggest that SRPK1 plays an oncogenic role and could be a potential therapeutic target in HCC.  相似文献   

12.
Serine/arginine-rich (SR) proteins are important regulators of mRNA splicing. Several postsplicing activities have been described for a subset of shuttling SR proteins, including regulation of mRNA export and translation. Using the fibronectin gene to study the links between signal-transduction pathways and SR protein activity, we show that growth factors not only modify the alternative splicing pattern of the fibronectin gene but also alter translation of reporter messenger RNAs in an SR protein-dependent fashion, providing two coregulated levels of isoform-specific amplification. These effects are inhibited by specific small interfering RNAs against SR proteins and are mediated by the AKT kinase, which elicits opposite effects to those evoked by overexpressing SR protein kinases Clk and SRPK. These results show how SR protein activity is modified in response to extracellular stimulation, leading to a concerted regulation of splicing and translation.  相似文献   

13.
14.
Serine/threonine kinase Akt is thought to mediate many biological actions toward anti-apoptotic responses. Screening of drugs that could interfere with the Akt signaling pathway revealed that Hsp90 inhibitors (e.g. geldanamycin, radicicol, and its analogues) induced Akt dephosphorylation, which resulted in Akt inactivation and apoptosis of the cells. Hsp90 inhibitors did not directly affect Akt kinase activity in vitro. Thus, we examined the effects of Hsp90 inhibitors on upstream Akt kinases, phosphatidylinositide-3-OH kinase (PI3K) and 3-phosphoinositide-dependent protein kinase-1 (PDK1). Hsp90 inhibitors had no effect on PI3K protein expression. In contrast, treatment of the cells with Hsp90 inhibitors decreased the amount of PDK1 without directly inhibiting PDK1 kinase activity. We found that the kinase domain of PDK1 was essential for complex formation with Hsp90 and that Hsp90 inhibitors suppressed PDK1 binding to Hsp90. PDK1 degradation mechanisms revealed that inhibition of PDK1 binding to Hsp90 caused proteasome-dependent degradation of PDK1. Treatment of proteasome inhibitors increased the amount of detergent-insoluble PDK1 in Hsp90 inhibitor-treated cells. Therefore, the association of PDK1 with Hsp90 regulates its stability, solubility, and signaling. Because Akt binding to Hsp90 is also involved in the maintenance of Akt kinase activity, Hsp90 plays an important role in PDK1-Akt survival signaling pathway.  相似文献   

15.
Ghosh G  Adams JA 《The FEBS journal》2011,278(4):587-597
The splicing of mRNA requires a group of essential factors known as SR proteins, which participate in the maturation of the spliceosome. These proteins contain one or two RNA recognition motifs and a C-terminal domain rich in Arg-Ser repeats (RS domain). SR proteins are phosphorylated at numerous serines in the RS domain by the SR-specific protein kinase (SRPK) family of protein kinases. RS domain phosphorylation is necessary for entry of SR proteins into the nucleus, and may also play important roles in alternative splicing, mRNA export, and other processing events. Although SR proteins are polyphosphorylated in vivo, the mechanism underlying this complex reaction has only been recently elucidated. Human alternative splicing factor [serine/arginine-rich splicing factor 1 (SRSF1)], a prototype for the SR protein family, is regiospecifically phosphorylated by SRPK1, a post-translational modification that controls cytoplasmic-nuclear localization. SRPK1 binds SRSF1 with unusually high affinity, and rapidly modifies about 10-12 serines in the N-terminal region of the RS domain (RS1), using a mechanism that incorporates sequential, C-terminal to N-terminal phosphorylation and several processive steps. SRPK1 employs a highly dynamic feeding mechanism for RS domain phosphorylation in which the N-terminal portion of RS1 is initially bound to a docking groove in the large lobe of the kinase domain. Upon subsequent rounds of phosphorylation, this N-terminal segment translocates into the active site, and a β-strand in RNA recognition motif 2 unfolds and occupies the docking groove. These studies indicate that efficient regiospecific phosphorylation of SRSF1 is the result of a contoured binding cavity in SRPK1, a lengthy Arg-Ser repetitive segment in the RS domain, and a highly directional processing mechanism.  相似文献   

16.
Alternative splicing of the Krüppel-like factor 6 (KLF6) tumor suppressor into an antagonistic splice variant 1 (SV1) is a pathogenic event in several cancers including hepatocellular carcinoma (HCC) because elevated SV1 is associated with increased tumor metastasis and mortality. Ras activation is one factor that can enhance KLF6 splicing in cancer cells, however pathways driving KLF6 splicing are unknown. Splice site selection is regulated by splice factors that include serine/arginine-rich (SR) proteins such as SRSF1 (ASF-SF2), which in turn is controlled by phosphoinositide 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) signaling pathway. Because signaling pathways downstream of the liver mitogen hepatocyte growth factor (HGF) include Akt, we explored whether HGF induces KLF6 alternative splicing. In HepG2 cells, HGF (25 ng/mL) significantly increases the ratio of SV1/KLF6 full by 40% through phosphorylation of Akt and subsequent downregulation of two splicing regulators, SRSF3 (SRp20) and SRSF1. Decreased SRSF3 levels regulate SRSF1 levels by alternative splicing associated with the nonsense-mediated mRNA decay pathway (AS-NMD), which stimulates cell growth by decreasing p21 levels. Enhanced cell replication through increased KLF6 alternative splicing is a novel growth-promoting pathway of HGF that could contribute to the molecule's mitogenic activity in physiologic liver growth and hepatocellular carcinoma. Mol Cancer Res; 10(9); 1216-27. ?2012 AACR.  相似文献   

17.
Both phospholipase (PL) C-gamma1 and Akt (protein kinase B; PKB) are signaling proteins that play significant roles in the intracellular signaling mechanism used by receptor tyrosine kinases, including epidermal growth factor (EGF) receptor (EGFR). EGFR activates PLC-gamma1 directly and activates Akt indirectly through phosphatidylinositol 3-kinase (PI3K). Many studies have shown that the PLC-gamma1 pathway and PI3K-Akt pathway interact with each other. However, it is not known whether PLC-gamma1 binds to Akt directly. In this communication, we identified a novel interaction between PLC-gamma1 and Akt. We demonstrated that the interaction is mediated by the binding of PLC-gamma1 Src homology (SH) 3 domain to Akt proline-rich motifs. We also provide a novel model to depict how the interaction between PLC-gamma1 SH3 domain and Akt proline-rich motifs is dependent on EGF stimulation. In this model, phosphorylation of PLC-gamma1 Y783 by EGF causes the conformational change of PLC-gamma1 to allow the interaction of its SH3 domain with Akt proline-rich motifs. Furthermore, we showed that the interaction between PLC-gamma1 and Akt resulted in the phosphorylation of PLC-gamma1 S1248 by Akt. Finally, we showed that the interaction between PLC-gamma1 and Akt enhanced EGF-stimulated cell motility.  相似文献   

18.
SRSF2 is a serine/arginine-rich protein belonging to the family of SR proteins that are crucial regulators of constitutive and alternative pre-mRNA splicing. Although it is well known that phosphorylation inside RS domain controls activity of SR proteins, other post-translational modifications regulating SRSF2 functions have not been described to date. In this study, we provide the first evidence that the acetyltransferase Tip60 acetylates SRSF2 on its lysine 52 residue inside the RNA recognition motif, and promotes its proteasomal degradation. We also demonstrate that the deacetylase HDAC6 counters this acetylation and acts as a positive regulator of SRSF2 protein level. In addition, we show that Tip60 downregulates SRSF2 phosphorylation by inhibiting the nuclear translocation of both SRPK1 and SRPK2 kinases. Finally, we demonstrate that this acetylation/phosphorylation signalling network controls SRSF2 accumulation as well as caspase-8 pre-mRNA splicing in response to cisplatin and determines whether cells undergo apoptosis or G(2)/M cell cycle arrest. Taken together, these results unravel lysine acetylation as a crucial post-translational modification regulating SRSF2 protein level and activity in response to genotoxic stress.  相似文献   

19.
Serine-arginine protein kinases (SPRKs) constitute a relatively novel subfamily of serine-threonine kinases that specifically phosphorylate serine residues residing in serine-arginine/arginine-serine dipeptide motifs. Fifteen years of research subsequent to the purification and cloning of human SRPK1 as a SR splicing factor-phosphorylating protein have lead to the accumulation of information on the function and regulation of the different members of this family, as well as on the genomic organization of SRPK genes in several organisms. Originally considered to be devoted to constitutive and alternative mRNA splicing, SRPKs are now known to expand their influence to additional steps of mRNA maturation, as well as to other cellular activities, such as chromatin reorganization in somatic and sperm cells, cell cycle and p53 regulation, and metabolic signalling. Similarly, SRPKs were considered to be constitutively active kinases, although several modes of regulation of their function have been demonstrated, implying an elaborate cellular control of their activity. Finally, SRPK gene sequence information from bioinformatics data reveals that SRPK gene homologs exist either in single or multiple copies in every single eukaryotic organism tested, emphasizing the importance of SRPK protein function for cellular life.  相似文献   

20.
Infection with some viruses can alter cellular mRNA processing to favor viral gene expression. We present evidence that herpes simplex virus 1 (HSV-1) protein ICP27, which contributes to host shut-off by inhibiting pre-mRNA splicing, interacts with essential splicing factors termed SR proteins and affects their phosphorylation. During HSV-1 infection, phosphorylation of several SR proteins was reduced and this correlated with a subnuclear redistribution. Exogenous SR proteins restored splicing in ICP27-inhibited nuclear extracts and SR proteins isolated from HSV-1-infected cells activated splicing in uninfected S100 extracts, indicating that inhibition occurs by a reversible mechanism. Spliceosome assembly was blocked at the pre-spliceosomal complex A stage. Furthermore, we show that ICP27 interacts with SRPK1 and relocalizes it to the nucleus; moreover, SRPK1 activity was altered in the presence of ICP27 in vitro. We propose that ICP27 modifies SRPK1 activity resulting in hypophosphorylation of SR proteins impairing their ability to function in spliceosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号