首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hydrogen exchange rates of the imino protons of the thrombin-binding 15 mer DNA aptamer d(G(1)G(2)T(3)T(4)G(5)G(6)T(7)G(8)T(9)G(10)G(11)T(12)T(13)G(14)G(15)) in the presence of Sr(2+) were measured. In the temperature range 15-35 degrees C, the exchange rates of the eight iminos in the quadruplex core were not uniform, with the G(2), G(11) and G(15) iminos exchanging faster, the G(1), G(5), G(10) and G(14) iminos exchanging slower, and the G(6) imino exchanging at a medium rate. In the quadruplex G(1), G(5), G(10) and G(14) adopted syn glycosidic conformation, while G(2), G(6), G(11) and G(15) adopted anti-conformation. It was found that the four slowly exchanging iminos, which were all the syn-iminos, happened to be located in the TT loops that were not easy to open to the solvent. The anti-iminos exchanged faster, but the G(6) imino exchanged slower than other anti-iminos, because its hydrogen bond with the G(10)O6 was stabilized by the TGT loop. The fact that the G(6) imino exchanged at a faster rate than those syn-iminos in the TT loops suggested that the TGT loop was less stable than the TT loops. Unfolding mechanism for the quadruplex was thus proposed: The quadruplex first uncoupled the three base pairs: G(1)-G(15), G(2)-G(14) and G(5)-G(11), which were not protected by any loops. Then it opened the TGT loop. Finally, it opened the TT loops and the sequence became an unstructured random coil that exchanged with the quadruplex conformation. The conformational exchange between the quadruplex and random coil had been detected.  相似文献   

2.
A new modified acyclic nucleoside, namely N(1)-(3-hydroxy-2-hydroxymethyl-2-methylpropyl)-thymidine, was synthesized and transformed into a building block useful for oligonucleotide (ON) automated synthesis. A series of modified thrombin binding aptamers (TBAs) in which the new acyclic nucleoside replaces, one at the time, the thymidine residues were then synthesized and characterized by UV, CD, MS, and (1)H NMR. The biological activity of the resulting TBAs was tested by Prothrombin Time assay (PT assay) and by purified fibrinogen clotting assay. From a structural point of view, nearly all the new TBA analogues show a similar behavior as the unmodified counterpart, being able to fold into a bimolecular or monomolecular quadruplex structure depending on the nature of monovalent cations (sodium or potassium) coordinated in the quadruplex core. From the comparison of structural and biological data, some important structure-activity relationships emerged, particularly when the modification involved the TT loops. In agreement with previous studies we found that the folding ability of TBA analogues is more affected by modifications involving positions 4 and 13, rather than positions 3 and 12. On the other hand, the highest anti-thrombin activities were detected for aptamers containing the modification at T13 or T12 positions, thus indicating that the effects produced by the introduction of the acyclic nucleoside on the biological activity are not tightly connected with structure stabilities. It is noteworthy that the modification at T7 produces an ON being more stable and active than the natural TBA.  相似文献   

3.
A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation.  相似文献   

4.
Heterogeneous nuclear ribonucleoprotein (hnRNP) D0 has two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), each of which can bind solely to the UUAG sequence specifically. The structure of the N-terminal RBD (RBD1) determined by NMR is presented here. It folds into a compact alphabeta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of the RNP-type RBDs. Special structural features of RBD1 include N-capping boxes for both alpha-helices, a beta-bulge in the second beta-strand, and an additional short antiparallel beta-sheet coupled with a beta-turn-like structure in a loop. Two hydrogen bonds which restrict the positions of loops were identified. Backbone resonance assignments for RBD1 complexed with r(UUAGGG) revealed that the overall folding is maintained in the complex. The candidate residues involved in the interactions with RNA were identified by chemical shift perturbation analysis. They are located in the central and peripheral regions of the RNA-binding surface composed of the four-stranded beta-sheet, loops, and the C-terminal region. It is suggested that non-specific interactions with RNA are performed by the residues in the central region of the RNA-binding surface, while specific interactions are performed by those in the peripheral regions. It was also found that RBD1 has the ability to inhibit the formation of the quadruplex structure.  相似文献   

5.
The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples.  相似文献   

6.
The thrombin-binding aptamer d(GGTTGGTGTGGTTGG) (TBA) is an efficient tool for the inhibition of thrombin function. We have studied conformations and thermodynamic stability of a number of modified TBA oligonucleotides containing thiophosphoryl substitution at different internucleotide sites. Using circular dichroism such modifications were found not to disrupt the antiparallel intramolecular quadruplex specific for TBA. Nevertheless, the presence of a single thiophosphoryl bond between two G-quartet planes led to a significant decrease in the quadruplex thermostability. On the contrary, modifications in each of the loop regions either stabilized an aptamer structure or did not reduce its stability. According to the thrombin time test, the aptamer with thio-modifications in both TT loops (LL11) exhibits the same antithrombin efficiency as the original TBA. This aptamer shows better stability against DNA nuclease compared to that of TBA. We conclude that such thio-modification patterns are very promising for the design of anticoagulation agents.  相似文献   

7.
Marathias VM  Bolton PH 《Biochemistry》1999,38(14):4355-4364
There are DNA sequences which adopt the same quadruplex structural type in the presence of sodium as in the presence of sodium and potassium. There are also sequences that appear to have a requirement for the presence of potassium for the adoption of a particular quadruplex structural type. Information about the basis for these potassium effects has been obtained by examining the structures of a set of DNAs with differing numbers of loop residues and different lengths of runs of dG residues in the presence of sodium alone and in the presence of potassium and sodium. On the basis of the results, obtained primarily via solution-state NMR, it appears that very small loops favor parallel stranded quartet structures which do not require the presence of potassium. DNAs with loops of two to four residues and runs of two dG residues can form quadruplex structures of the "edge" or "chair" type in the presence of potassium but not in the presence of sodium alone. When all of the loops contain four residues, a "crossover" or "basket" type structure can be formed in the presence of sodium as well as in the presence of sodium and potassium. Structures with runs of three or four dG residues and with loops from two to four residues can form basket or crossover type structures in the absence of potassium. The presence of a purine in a loop can block both potassium binding and formation of chair type structures. Modeling of the interactions of cations with these quadruplex structures indicates that the potassium ions required for chair type structures interact with a terminal quartet and residues in the adjacent loop.  相似文献   

8.
tRNA-guanine transglycosylase (TGT) catalyzes the exchange of queuine (or a precursor) for guanine 34 in tRNA. The minimal RNA recognition motif for TGT has been found to involve a UGU sequence in the anticodon loop of the queuine-cognate tRNAs. Recent studies have shown that the enzyme is capable of recognizing the UGU sequence in alternative contexts (Kung, F. L., Nonekowski, S., and Garcia, G. A. (2000) RNA 6, 233-244) and have investigated the role of the first U of the UGU sequence in tRNA recognition by TGT (Nonekowski, S. T., and Garcia, G. A. (2001) RNA 7, 1432-1441). The TGT reaction involves the breakage and re-formation of a glycosidic bond. To rule out a potential chemical mechanism involving the 2'-hydroxyl at position 34, we synthesized and evaluated an RNA minihelix with 2'-deoxy-G at 34. The high level of activity exhibited by this analogue indicates that the 2'-hydroxyl of G(34) is not required for catalysis. Furthermore, we find that TGT can recognize analogues composed entirely of DNA, but only when 2'-deoxyuridines replace the thymidines in the DNA. The requirement for uridine bases for recognition is perhaps not surprising given the UGU recognition motif for TGT. However, it is not clear if the uracil requirement is due to specific recognition by TGT or due to the effect of uracils on the conformation of the oligonucleotide.  相似文献   

9.
We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5'G(syn)-G(anti)3', and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.  相似文献   

10.
In eubacteria, the biosynthesis of queuine, a modified base found in the wobble position (#34) of tRNAs coding for Tyr, His, Asp, and Asn, occurs via a multistep pathway. One of the key enzymes in this pathway, tRNA-guanine transglycosylase (TGT), exchanges the genetically encoded guanine at position 34 with a queuine precursor, preQ1. Previous studies have identified a minimal positive RNA recognition motif for Escherichia coli TGT consisting of a stable minihelix that contains a U-G-U sequence starting at the second position of its seven base anticodon loop. Recently, we reported that TGT was capable of recognizing the U-G-U sequence outside of this limited structural context. To further characterize the ability of TGT to recognize the U-G-U sequence in alternate contexts, we constructed mutants of the previously characterized E. coli tRNA(Tyr) minihelix. The U-G-U sequence was shifted to various positions within the anticodon loop of these mutants. Characterization of these analogs demonstrates that in addition to the normal U33G34U35 position, TGT can also recognize the U34G35U36 analog (UGU(+1)). The other analogs were not active. This indicates that the recognition of the U-G-U sequence is not strictly dependent upon its position relative to the stem. In E. coli, the full-length tRNA with a U34G35U36 anticodon sequence is one of the isoacceptors that codes for threonine. We found that TGT is able to recognize tRNA(Thr(UGU)) but only in the absence of a uridine at position 33. U33, an invariant base present in all tRNAs, has been shown to strongly influence the conformation of the anticodon loop of certain tRNAs. We find that mutation of this base confers on TGT the ability to recognize U34G35U36, and suggests that loop conformation affects recognition. The fact that the other analogs were not active indicates that although TGT is capable of recognizing the U-G-U sequence in additional contexts, this recognition is not indiscriminate.  相似文献   

11.
BackgroundThe thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative activities. Its chemico-physical and/or biological properties can be tuned by the site-specific replacement of selected residues.MethodsFour oligodeoxynucleotides (ODNs) based on the TBA sequence (5′-GGTTGGTGTGGTTGG-3′) and containing 2′-deoxyuridine (U) or 5-bromo-2′-deoxyuridine (B) residues at positions 4 or 13 have been investigated by NMR and CD techniques. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay) have been tested and compared with two further ODNs containing 5-hydroxymethyl-2′-deoxyuridine (H) residues in the same positions, previously investigated.ResultsThe CD and NMR data suggest that all the investigated ODNs are able to form G-quadruplexes strictly resembling that of TBA. The introduction of B residues in positions 4 or 13 increases the melting temperature of the modified aptamers by 7 °C. The replacement of thymidines with U in the same positions results in an enhanced anticoagulant activity compared to TBA, also at low ODN concentration. Although all ODNs show antiproliferative properties, only TBA derivatives containing H in the positions 4 and 13 lose the anticoagulant activity and remarkably preserve the antiproliferative one.ConclusionsAll ODNs have shown antiproliferative activities against two cancer cell lines but only those with U and B are endowed with anticoagulant activities similar or improved compared to TBA.General significance:The appropriate site-specific replacement of the residues in the TT loops of TBA with commercially available thymine analogues is a useful strategy either to improve the anticoagulant activity or to preserve the antiproliferative properties by quenching the anticoagulant ones.  相似文献   

12.
Thrombin binding aptamer is a DNA 15-mer which forms a G-quadruplex structure and possess promising anticoagulant properties due to specific interactions with thrombin. Herein we present the influence of a single 2'-C-piperazino-UNA residue and UNA residues incorporated in several positions on thermodynamics, kinetics and biological properties of the aptamer. 2'-C-Piperazino-UNA is characterized by more efficient stabilization of quadruplex structure in comparison to regular UNA and increases thermodynamic stability of TBA by 0.28-0.44 kcal/mol in a position depending manner with retained quadruplex topology and molecularity. The presence of UNA-U in positions U3, U7, and U12 results in the highest stabilization of G-quadruplex structure (ΔΔG(37)(°)=-1.03kcal/mol). On the contrary, the largest destabilization mounting to 1.79 kcal/mol was observed when UNA residues were placed in positions U7, G8, and U9. Kinetic studies indicate no strict correlation between thermodynamic stability of modified variants and their binding affinity to thrombin. Most of the studied variants bind thrombin, albeit with decreased affinity in reference to unmodified TBA. Thrombin time assay studies indicate three variants as being as potent as TBA in fibrin clotting inhibition.  相似文献   

13.
In order to utilize 19F nuclear magnetic resonance (NMR) to probe the solution structure of Escherichia coli tRNAVal labeled by incorporation of 5-fluorouracil, we have assigned its 19F spectrum. We describe here assignments made by examining the spectra of a series of tRNAVal mutants with nucleotide substitutions for individual 5-fluorouracil residues. The result of base replacements on the structure and function of the tRNA are also characterized. Mutants were prepared by oligonucleotide-directed mutagenesis of a cloned tRNAVal gene, and the tRNAs transcribed in vitro by bacteriophage T7 RNA polymerase. By identifying the missing peak in the 19F NMR spectrum of each tRNA variant we were able to assign resonances from fluorouracil residues in loop and stem regions of the tRNA. As a result of the assignment of FU33, FU34 and FU29, temperature-dependent spectral shifts could be attributed to changes in anticodon loop and stem conformation. Observation of a magnesium ion-dependent splitting of the resonance assigned to FU64 suggested that the T-arm of tRNAVal can exist in two conformations in slow exchange on the NMR time scale. Replacement of most 5-fluorouracil residues in loops and stems had little effect on the structure of tRNAVal; few shifts in the 19F NMR spectrum of the mutant tRNAs were noted. However, replacing the FU29.A41 base-pair in the anticodon stem with C29.G41 induced conformational changes in the anticodon loop as well as in the P-10 loop. Effects of nucleotide substitution on aminoacylation were determined by comparing the Vmax and Km values of tRNAVal mutants with those of the wild-type tRNA. Nucleotide substitution at the 3' end of the anticodon (position 36) reduced the aminoacylation efficiency (Vmax/Km) of tRNAVal by three orders of magnitude. Base replacement at the 5' end of the anticodon (position 34) had only a small negative effect on the aminoacylation efficiency. Substitution of the FU29.A41 base-pair increased the Km value 20-fold, while Vmax remained almost unchanged. The FU4.A69 base-pair in the acceptor stem, could readily be replaced with little effect on the aminoacylation efficiency of E. coli tRNAVal, indicating that this base-pair is not an identity element of the tRNA, as suggested by others.  相似文献   

14.
The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.  相似文献   

15.
The trypsin inhibitor DE-3 from Erythrina caffra (ETI) belongs to the Kunitz-type soybean trypsin inhibitor (STI) family and consists of 172 amino acid residues with two disulphide bridges. The amino acid sequence of ETI shows high homology to other trypsin inhibitors from the same family but ETI has the unique ability to bind and inhibit tissue plasminogen activator. The crystal structure of ETI has been determined using the method of isomorphous replacement and refined using a combination of simulated annealing and conventional restrained least-squares crystallographic refinement. The refined model includes 60 water molecules and 166 amino acid residues, with a root-mean-square deviation in bond lengths from ideal values of 0.016 A. The crystallographic R-factor is 20.8% for 7770 independent reflections between 10.0 and 2.5 A. The three-dimensional structure of ETI consists of 12 antiparallel beta-strands joined by long loops. Six of the strands form a short antiparallel beta-barrel that is closed at one end by a "lid" consisting of the other six strands coupled in pairs. The molecule shows approximate 3-fold symmetry about the axis of the barrel, with the repeating unit consisting of four sequential beta-strands and the connecting loops. Although there is no sequence homology, this same fold is present in the structure of interleukin-1 alpha and interleukin-1 beta. When the structure of ETI and interleukin-1 beta are superposed, the close agreement between the alpha-carbon positions for the beta-strands is striking. The scissile bond (Arg63-Ser64) is located on an external loop that protrudes from the surface of the molecule and whose architecture is not constrained by secondary structure elements, disulphide bridges or strong electrostatic interactions. The hydrogen bonds made by the side-chain amide group of Asn12 play a key role in maintaining the three-dimensional structure of the loop. This residue is in a position corresponding to that of a conserved asparagine in the Kazal inhibitor family. Although the overall structure of ETI is similar to the partial structure of STI, the scissile bond loop is displaced by about 4 A. This displacement probably arises from the fact that the structure of STI has been determined in a complex with trypsin but could possibly be a consequence of the close molecular contact between Arg63 and an adjacent molecule in the crystal lattice.  相似文献   

16.
Twenty-two anticodon arm analogues were prepared by joining different tetra, penta, and hexaribonucleotides to a nine nucleotide fragment of yeast tRNAPhe with T4 RNA ligase. The oligomer with the same sequence as the anticodon arm of tRNAPhe bind poly U programmed 30S ribosomes with affinity similar to intact tRNAPhe. Analogues with an additional nucleotide in the loop bind ribosomes with a weaker affinity whereas analogues with one less nucleotide in the loop do not bind ribosomes at all. Reasonably tight binding of anticodon arms with different nucleotides on the 5' side of the anticodon suggest that positions 32 and 33 in the tRNAPhe sequence are not essential for ribosome binding. However, differences in the binding constants for anticodon arms containing modified uridine residues in the "constant uridine" position suggest that both of the internal "U turn" hydrogen bonds predicted by the X-ray crystal structure are necessary for maximal ribosome binding.  相似文献   

17.
Covalent ligation studies on the human telomere quadruplex   总被引:5,自引:4,他引:1  
Qi J  Shafer RH 《Nucleic acids research》2005,33(10):3185-3192
Recent X-ray crystallographic studies on the human telomere sequence d[AGGG(TTAGGG)3] revealed a unimolecular, parallel quadruplex structure in the presence of potassium ions, while earlier NMR results in the presence of sodium ions indicated a unimolecular, antiparallel quadruplex. In an effort to identify and isolate the parallel form in solution, we have successfully ligated into circular products the single-stranded human telomere and several modified human telomere sequences in potassium-containing solutions. Using these sequences with one or two terminal phosphates, we have made chemically ligated products via creation of an additional loop. Circular products have been identified by polyacrylamide gel electrophoresis, enzymatic digestion with exonuclease VII and electrospray mass spectrometry in negative ion mode. Optimum pH for the ligation reaction of the human telomere sequence ranges from 4.5 to 6.0. Several buffers were also examined, with MES yielding the greatest ligation efficiency. Human telomere sequences with two phosphate groups, one each at the 3′ and 5′ ends, were more efficient at ligation, via pyrophosphate bond formation, than the corresponding sequences with only one phosphate group, at the 5′ end. Circular dichroism spectra showed that the ligation product was derived from an antiparallel, single-stranded guanine quadruplex rather than a parallel single-stranded guanine quadruplex structure.  相似文献   

18.
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.  相似文献   

19.
DNA guanine quadruplexes are all based on stacks of guanine tetrads, but they can be of many types differing by mutual strand orientation, topology, position and structure of loops, and the number of DNA molecules constituting their structure. Here we have studied a series of nine DNA fragments (G(3)Xn)(3)G(3), where X = A, C or T, and n = 1, 2 or 3, to find how the particular bases and their numbers enable folding of the molecule into quadruplex and what type of quadruplex is formed. We show that any single base between G(3) blocks gives rise to only four-molecular parallel-stranded quadruplexes in water solutions. In contrast to previous models, even two Ts in potential loops lead to tetramolecular parallel quadruplexes and only three consecutive Ts lead to an intramolecular quadruplex, which is antiparallel. Adenines make the DNA less prone to quadruplex formation. (G(3)A(2))(3)G(3) folds into an intramolecular antiparallel quadruplex. The same is true with (G(3)A(3))(3)G(3) but only in KCl. In NaCl or LiCl, (G(3)A(3))(3)G(3) prefers to generate homoduplexes. Cytosine still more interferes with the quadruplex, which only is generated by (G(3)C)(3)G(3), whereas (G(3)C(2))(3)G(3) and (G(3)C(3))(3)G(3) generate hairpins and/or homoduplexes. Ethanol is a more potent DNA guanine quadruplex inducer than are ions in water solutions. It promotes intramolecular folding and parallel orientation of quadruplex strands, which rather corresponds to quadruplex structures observed in crystals.  相似文献   

20.
Here we report a deoxyribozyme with a unique structure that contains a two-tiered guanine quadruplex interlinked to a Watson-Crick duplex. Through in vitro selection, sequence mutation, and methylation interference, we show the presence of both the two-tiered guanine-quadruplex and two helical regions contained in the active structure of this self-phosphorylating deoxyribozyme. Interestingly, one GG element of the quadruplex is part of a hairpin loop within one of the identified helical regions. Circular dichroism analysis showed that antiparallel quadruplex formation was dependent on this helix. To our knowledge, this is the first report of a pseudoknot nucleic acid structure that involves a guanine quadruplex. Our findings indicate that guanine quadruplexes can be part of complex structural arrangements, increasing the likelihood of finding more complex guanine quadruplex arrangements in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号