首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Congenital heart disease (CHD) is the most common congenital malformation, with evidence of a strong genetic component. We analyzed data from 223 consecutively ascertained families, each consisting of at least one child affected by a conotruncal defect (CNT) or hypoplastic left heart disease (HLHS) and both parents. The NimbleGen HD2-2.1 comparative genomic hybridization platform was used to identify de novo and rare inherited copy number variants (CNVs). Excluding 10 cases with 22q11.2 DiGeorge deletions, we validated de novo CNVs in 8 % of 148 probands with CNTs, 12.7 % of 71 probands with HLHS and none in 4 probands with both. Only 2 % of control families showed a de novo CNV. We also identified a group of ultra-rare inherited CNVs that occurred de novo in our sample, contained a candidate gene for CHD, recurred in our sample or were present in an affected sibling. We confirmed the contribution to CHD of copy number changes in genes such as GATA4 and NODAL and identified several genes in novel recurrent CNVs that may point to novel CHD candidate loci. We also found CNVs previously associated with highly variable phenotypes and reduced penetrance, such as dup 1q21.1, dup 16p13.11, dup 15q11.2-13, dup 22q11.2, and del 2q23.1. We found that the presence of extra-cardiac anomalies was not related to the frequency of CNVs, and that there was no significant difference in CNV frequency or specificity between the probands with CNT and HLHS. In agreement with other series, we identified likely causal CNVs in 5.6 % of our total sample, half of which were de novo.  相似文献   

3.
Structural genetic changes, especially copy number variants (CNVs), represent a major source of genetic variation contributing to human disease. Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease, but to date little is known about the role of CNVs in the etiology of TOF. Using high-resolution genome-wide microarrays and stringent calling methods, we investigated rare CNVs in a prospectively recruited cohort of 433 unrelated adults with TOF and/or pulmonary atresia at a single centre. We excluded those with recognized syndromes, including 22q11.2 deletion syndrome. We identified candidate genes for TOF based on converging evidence between rare CNVs that overlapped the same gene in unrelated individuals and from pathway analyses comparing rare CNVs in TOF cases to those in epidemiologic controls. Even after excluding the 53 (10.7%) subjects with 22q11.2 deletions, we found that adults with TOF had a greater burden of large rare genic CNVs compared to controls (8.82% vs. 4.33%, p?=?0.0117). Six loci showed evidence for recurrence in TOF or related congenital heart disease, including typical 1q21.1 duplications in four (1.18%) of 340 Caucasian probands. The rare CNVs implicated novel candidate genes of interest for TOF, including PLXNA2, a gene involved in semaphorin signaling. Independent pathway analyses highlighted developmental processes as potential contributors to the pathogenesis of TOF. These results indicate that individually rare CNVs are collectively significant contributors to the genetic burden of TOF. Further, the data provide new evidence for dosage sensitive genes in PLXNA2-semaphorin signaling and related developmental processes in human cardiovascular development, consistent with previous animal models.  相似文献   

4.
We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.  相似文献   

5.
Recurrent deletions and duplications at chromosomal region 16p11.2 are a major genetic contributor to autism but also associate with a wider range of pediatric diagnoses, including intellectual disability, coordination disorder, and language disorder. In order to investigate the potential genetic basis for phenotype variability, we assessed the parent of origin of the 16p11.2 copy-number variant (CNV) and the presence of additional CNVs in 126 families for which detailed phenotype data were available. Among de novo cases, we found a strong maternal bias for the origin of deletions (59/66, 89.4% of cases, p = 2.38 × 10−11), the strongest such effect so far observed for a CNV associated with a microdeletion syndrome. In contrast to de novo events, we observed no transmission bias for inherited 16p11.2 CNVs, consistent with a female meiotic hotspot of unequal crossover driving this maternal bias. We analyzed this 16p11.2 CNV cohort for the presence of secondary CNVs and found a significant maternal transmission bias for secondary deletions (32 maternal versus 14 paternal, p = 1.14 × 10−2). Of the secondary deletions that disrupted a gene, 82% were either maternally inherited or de novo (p = 4.3 × 10−3). Nine probands carry secondary CNVs that disrupt genes associated with autism and/or intellectual disability risk variants. Our findings demonstrate a strong bias toward maternal origin of 16p11.2 de novo deletions as well as a maternal transmission bias for secondary deletions that contribute to the clinical outcome on a background sensitized by the 16p11.2 CNV.  相似文献   

6.

Background

Congenital heart defects (CHD), as the most common congenital anomaly, have been reported to be frequently associated with pathogenic copy number variants (CNVs). Currently, patients with CHD are routinely offered chromosomal microarray (CMA) testing, but the diagnostic yield of CMA on CHD patients has not been extensively evaluated based on a large patient cohort. In this study, we retrospectively assessed the detected CNVs in a total of 514 CHD cases (a 422-case clinical cohort from Boston Children''s Hospital (BCH) and a 92-case research cohort from Shanghai Children’s Medical Center (SCMC)) and conducted a genotype-phenotype analysis. Furthermore, genes encompassed in pathogenic/likely pathogenic CNVs were prioritized by integrating several tools and public data sources for novel CHD candidate gene identification.

Results

Based on the BCH cohort, the overall diagnostic yield of CMA testing for CHD patients was 12.8(pathogenic CNVs)-18.5% (pathogenic and likely pathogenic CNVs). The diagnostic yield of CMA for syndromic CHD was 14.1-20.6% (excluding aneuploidy cases), whereas the diagnostic yield for isolated CHD was 4.3-9.3%. Four recurrent genomic loci (4q terminal region, 15q11.2, 16p12.2 and Yp11.2) were more significantly enriched in cases than in controls. These regions are considered as novel CHD loci. We further identified 20 genes as the most likely novel CHD candidate genes through gene prioritization analysis.

Conclusion

The high clinical diagnostic yield of CMA in this study provides supportive evidence for CMA as the first-line genetic diagnostic tool for CHD patients. The CNVs detected in our study suggest a number of CHD candidate genes that warrant further investigation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1127) contains supplementary material, which is available to authorized users.  相似文献   

7.
Structural variation of chromosomes in autism spectrum disorder   总被引:2,自引:0,他引:2       下载免费PDF全文
Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.  相似文献   

8.
Array CGH enables the detection of pathogenic copy number variants (CNVs) in 5–15% of individuals with intellectual disability (ID), making it a promising tool for uncovering ID candidate genes. However, most CNVs encompass multiple genes, making it difficult to identify key disease gene(s) underlying ID etiology. Using array CGH we identified 47 previously unreported unique CNVs in 45/255 probands. We prioritized ID candidate genes using five bioinformatic gene prioritization web tools. Gene priority lists were created by comparing integral genes from each CNV from our ID cohort with sets of training genes specific either to ID or randomly selected. Our findings suggest that different training sets alter gene prioritization only moderately; however, only the ID gene training set resulted in significant enrichment of genes with nervous system function (19%) in prioritized versus non-prioritized genes from the same de novo CNVs (7%, p < 0.05). This enrichment further increased to 31% when the five web tools were used in concert and included genes within mitogen-activated protein kinase (MAPK) and neuroactive ligand-receptor interaction pathways. Gene prioritization web tools enrich for genes with relevant function in ID and more readily facilitate the selection of ID candidate genes for functional studies, particularly for large CNVs.  相似文献   

9.
We searched for disruptive, genic rare copy-number variants (CNVs) among 411 families affected by sporadic autism spectrum disorder (ASD) from the Simons Simplex Collection by using available exome sequence data and CoNIFER (Copy Number Inference from Exome Reads). Compared to high-density SNP microarrays, our approach yielded ∼2× more smaller genic rare CNVs. We found that affected probands inherited more CNVs than did their siblings (453 versus 394, p = 0.004; odds ratio [OR] = 1.19) and that the probands’ CNVs affected more genes (921 versus 726, p = 0.02; OR = 1.30). These smaller CNVs (median size 18 kb) were transmitted preferentially from the mother (136 maternal versus 100 paternal, p = 0.02), although this bias occurred irrespective of affected status. The excess burden of inherited CNVs among probands was driven primarily by sibling pairs with discordant social-behavior phenotypes (p < 0.0002, measured by Social Responsiveness Scale [SRS] score), which contrasts with families where the phenotypes were more closely matched or less extreme (p > 0.5). Finally, we found enrichment of brain-expressed genes unique to probands, especially in the SRS-discordant group (p = 0.0035). In a combined model, our inherited CNVs, de novo CNVs, and de novo single-nucleotide variants all independently contributed to the risk of autism (p < 0.05). Taken together, these results suggest that small transmitted rare CNVs play a role in the etiology of simplex autism. Importantly, the small size of these variants aids in the identification of specific genes as additional risk factors associated with ASD.  相似文献   

10.
Genome-wide screenings for copy number variations (CNVs) in patients with schizophrenia have demonstrated the presence of several CNVs that increase the risk of developing the disease and a growing number of large rare CNVs; the contribution of these rare CNVs to schizophrenia remains unknown. Using Affymetrix 6.0 arrays, we undertook a systematic search for CNVs in 172 patients with schizophrenia and 160 healthy controls, all of Italian origin, with the aim of confirming previously identified loci and identifying novel schizophrenia susceptibility genes. We found five patients with a CNV occurring in one of the regions most convincingly implicated as risk factors for schizophrenia: NRXN1 and the 16p13.1 regions were found to be deleted in single patients and 15q11.2 in 2 patients, whereas the 15q13.3 region was duplicated in one patient. Furthermore, we found three distinct patients with CNVs in 2q12.2, 3q29 and 17p12 loci, respectively. These loci were previously reported to be deleted or duplicated in patients with schizophrenia but were never formally associated with the disease. We found 5 large CNVs (>900 kb) in 4q32, 5q14.3, 8q23.3, 11q25 and 17q12 in five different patients that could include some new candidate schizophrenia susceptibility genes. In conclusion, the identification of previously reported CNVs and of new, rare, large CNVs further supports a model of schizophrenia that includes the effect of multiple, rare, highly penetrant variants.  相似文献   

11.

Background

Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA).

Methods and Results

Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features.

Conclusions

Rare CNVs contribute to the pathogenesis of PA (9.8%), suggesting that the causes of PA are heterogeneous and pleiotropic. Together with previous data from animal models, our results might help identify a link between CHD and folate-mediated one-carbon metabolism (FOCM). With the accumulation of high-resolution SNP array data, these previously undescribed rare CNVs may help reveal critical gene(s) in CHD and may provide novel insights about CHD pathogenesis.  相似文献   

12.
Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.  相似文献   

13.
Bipolar disorder (BPD) is a common psychiatric illness with a complex mode of inheritance. Besides traditional linkage and association studies, which require large sample sizes, analysis of common and rare chromosomal copy number variants (CNVs) in extended families may provide novel insights into the genetic susceptibility of complex disorders. Using the Illumina HumanHap550 BeadChip with over 550,000 SNP markers, we genotyped 46 individuals in a three-generation Old Order Amish pedigree with 19 affected (16 BPD and three major depression) and 27 unaffected subjects. Using the PennCNV algorithm, we identified 50 CNV regions that ranged in size from 12 to 885 kb and encompassed at least 10 single nucleotide polymorphisms (SNPs). Of 19 well characterized CNV regions that were available for combined genotype-expression analysis 11 (58%) were associated with expression changes of genes within, partially within or near these CNV regions in fibroblasts or lymphoblastoid cell lines at a nominal P value <0.05. To further investigate the mode of inheritance of CNVs in the large pedigree, we analyzed a set of four CNVs, located at 6q27, 9q21.11, 12p13.31 and 15q11, all of which were enriched in subjects with affective disorders. We additionally show that these variants affect the expression of neuronal genes within or near the rearrangement. Our analysis suggests that family based studies of the combined effect of common and rare CNVs at many loci may represent a useful approach in the genetic analysis of disease susceptibility of mental disorders.  相似文献   

14.
Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates mechanisms through which synergistic effects resulting from large structural variation can contribute to human disease.  相似文献   

15.
Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy.  相似文献   

16.
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. The genetic etiology of RMS remains largely unclear underlying its development and progression. To reveal novel genes more precisely and new therapeutic targets associated with RMS, we used high-resolution array comparative genomic hybridization (aCGH) to explore tumor-associated copy number variations (CNVs) and genes in RMS. We confirmed several important genes by quantitative real-time polymerase chain reaction (QRT-PCR). We then performed bioinformatics-based functional enrichment analysis for genes located in the genomic regions with CNVs. In addition, we identified miRNAs located in the corresponding amplification and deletion regions and performed miRNA functional enrichment analysis. aCGH analyses revealed that all RMS showed specific gains and losses. The amplification regions were 12q13.12, 12q13.3, and 12q13.3–q14.1. The deletion regions were 1p21.1, 2q14.1, 5q13.2, 9p12, and 9q12. The recurrent regions with gains were 12q13.3, 12q13.3–q14.1, 12q14.1, and 17q25.1. The recurrent regions with losses were 9p12–p11.2, 10q11.21–q11.22, 14q32.33, 16p11.2, and 22q11.1. The mean mRNA level of GLI1 in RMS was 6.61-fold higher than that in controls (p = 0.0477) by QRT-PCR. Meanwhile, the mean mRNA level of GEFT in RMS samples was 3.92-fold higher than that in controls (p = 0.0354). Bioinformatic analysis showed that genes were enriched in functions such as immunoglobulin domain, induction of apoptosis, and defensin. Proto-oncogene functions were involved in alveolar RMS. miRNAs that located in the amplified regions in RMS tend to be enriched in oncogenic activity (miR-24 and miR-27a). In conclusion, this study identified a number of CNVs in RMS and functional analyses showed enrichment for genes and miRNAs located in these CNVs regions. These findings may potentially help the identification of novel biomarkers and/or drug targets implicated in diagnosis of and targeted therapy for RMS.  相似文献   

17.
Copy number variations (CNVs) are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs). In the multifaceted etiology of autism spectrum disorders (ASDs), CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology.  相似文献   

18.
Copy number variants (CNVs) at chromosome 16p13.11 have been associated with a range of neurodevelopmental disorders including autism, ADHD, intellectual disability and schizophrenia. Significant sex differences in prevalence, course and severity have been described for a number of these conditions but the biological and environmental factors underlying such sex-specific features remain unclear. We tested the burden and the possible sex-biased effect of CNVs at 16p13.11 in a sample of 10,397 individuals with a range of neurodevelopmental conditions, clinically referred for array comparative genomic hybridisation (aCGH); cases were compared with 11,277 controls. In order to identify candidate phenotype-associated genes, we performed an interval-based analysis and investigated the presence of ohnologs at 16p13.11; finally, we searched the DECIPHER database for previously identified 16p13.11 copy number variants. In the clinical referral series, we identified 46 cases with CNVs of variable size at 16p13.11, including 28 duplications and 18 deletions. Patients were referred for various phenotypes, including developmental delay, autism, speech delay, learning difficulties, behavioural problems, epilepsy, microcephaly and physical dysmorphisms. CNVs at 16p13.11 were also present in 17 controls. Association analysis revealed an excess of CNVs in cases compared with controls (OR = 2.59; p = 0.0005), and a sex-biased effect, with a significant enrichment of CNVs only in the male subgroup of cases (OR = 5.62; p = 0.0002), but not in females (OR = 1.19, p = 0.673). The same pattern of results was also observed in the DECIPHER sample. Interval-based analysis showed a significant enrichment of case CNVs containing interval II (OR = 2.59; p = 0.0005), located in the 0.83 Mb genomic region between 15.49–16.32 Mb, and encompassing the four ohnologs NDE1, MYH11, ABCC1 and ABCC6. Our data confirm that duplications and deletions at 16p13.11 represent incompletely penetrant pathogenic mutations that predispose to a range of neurodevelopmental disorders, and suggest a sex-limited effect on the penetrance of the pathological phenotypes at the 16p13.11 locus.  相似文献   

19.
To evaluate the potential importance in autistic subjects of copy number variants (CNVs) that alter genes of relevance to bioenergetics, ionic metabolism, and synaptic function, we conducted a detailed microarray analysis of 69 autism probands and 35 parents, compared to 89 CEU HapMap controls. This revealed that the frequency CNVs of≥100kb and CNVs of≥10 Kb were markedly increased in probands over parents and in probands and parents over controls. Evaluation of CNVs≥1Mb by chromosomal FISH confirmed the molecular identity of a subset of the CNVs, some of which were associated with chromosomal rearrangements. In a number of the cases, CNVs were found to alter the copy number of genes that are important in mitochondrial oxidative phosphorylation (OXPHOS), ion and especially calcium transport, and synaptic structure. Hence, autism might result from alterations in multiple bioenergetic and metabolic genes required for mental function. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

20.
Chromosomal deletions or reciprocal duplications of the 16p13.1 region have been implicated in a variety of neuropsychiatric disorders such as autism, schizophrenia, epilepsies, and attention-deficit hyperactivity disorder (ADHD). In this study, we investigated the association of recurrent genomic copy number variants (CNVs) with thoracic aortic aneurysms and dissections (TAAD). By using SNP arrays to screen and comparative genomic hybridization microarrays to validate, we identified 16p13.1 duplications in 8 out of 765 patients of European descent with adult-onset TAAD compared with 4 of 4,569 controls matched for ethnicity (P = 5.0×10−5, OR = 12.2). The findings were replicated in an independent cohort of 467 patients of European descent with TAAD (P = 0.005, OR = 14.7). Patients with 16p13.1 duplications were more likely to harbor a second rare CNV (P = 0.012) and to present with aortic dissections (P = 0.010) than patients without duplications. Duplications of 16p13.1 were identified in 2 of 130 patients with familial TAAD, but the duplications did not segregate with TAAD in the families. MYH11, a gene known to predispose to TAAD, lies in the duplicated region of 16p13.1, and increased MYH11 expression was found in aortic tissues from TAAD patients with 16p13.1 duplications compared with control aortas. These data suggest chromosome 16p13.1 duplications confer a risk for TAAD in addition to the established risk for neuropsychiatric disorders. It also indicates that recurrent CNVs may predispose to disorders involving more than one organ system, an observation critical to the understanding of the role of recurrent CNVs in human disease and a finding that may be common to other recurrent CNVs involving multiple genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号