首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the involvement of Rac1 in nuclear factor kappaB (NFkappaB) activation by interleukin 1 (IL1). IL1 induced a rapid and sustained activation of Rac1 in the thymoma cell line EL4.NOB-1. Transient transfection with dominant negative RacN17 inhibited IL1-induced kappaB-dependent reporter gene expression but not IkappaBalpha degradation, whereas constitutively active RacV12 potentiated kappaB-dependent reporter gene expression in response to IL1 but had no effects on its own. Using porcine aortic endothelial cells stably transfected with RacV12 or RacN17 under the control of an inducible promoter, we confirmed that RacV12 did not affect IkappaBalpha degradation, nor did RacN17 inhibit the IL1-induced response. RacV12 was also unable to induce nuclear translocation of NFkappaB. These effects suggested a role for Rac1 in p65-mediated transactivation of NFkappaB, independent of IkappaBalpha regulation. In support of this we found that IL1 activated a pathway leading to increased p65 transactivation activity and that RacV12 alone could drive this response in both cell systems. Additionally, RacN17 inhibited IL1-driven p65-mediated transactivation. From data using specific inhibitors of p38 and p42/p44 kinases we propose that both p38 and p42/p44 lie downstream of Rac1 on the IL1 pathway leading to enhanced transactivation by p65.  相似文献   

2.
BACKGROUND: The molecular reorganization of signaling molecules after T cell receptor (TCR) activation is accompanied by polymerization of actin at the site of contact between a T cell and an antigen-presenting cell (APC), as well as extension of actin-rich lamellipodia around the APC. Actin polymerization is critical for the fidelity and efficiency of the T cell response to antigen. The ability of T cells to polymerize actin is critical for several steps in T cell activation including TCR clustering, mature immunological synapse formation, calcium flux, IL-2 production, and proliferation. Activation of the Rac GTPase has been linked to regulation of actin polymerization after TCR stimulation. However, the molecules required for TCR-mediated actin polymerization downstream of activated Rac have remained elusive. Here we identify a novel role for the Abi/Wave protein complex, which signals downstream of activated Rac, in the regulation of actin polymerization and T cell activation in response to TCR stimulation. RESULTS: Here we show that Abi and Wave rapidly translocate from the T cell cytoplasm to the T cell:B cell contact site in the presence of antigen. Abi and Wave colocalize with actin at the T cell:B cell conjugation site. Moreover, Wave and Abi are necessary for actin polymerization after T cell activation, and loss of Abi proteins in mice impairs TCR-induced cell proliferation and IL-2 production in primary T cells. Significantly, the impairment in actin polymerization in cells lacking Abi proteins is due to the inability of Wave proteins to localize to the T cell:B cell contact site in the presence of antigen, rather than the destabilization of the components of the Wave protein complex. CONCLUSIONS: The Abi/Wave complex is a novel regulator of TCR-mediated actin dynamics, IL-2 production, and proliferation.  相似文献   

3.
We have examined the involvement of components of the interleukin-1 (IL-1) signaling pathway in the transactivation of gene expression by the p65 subunit of NF-kappaB. Transient transfection of cells with plasmids encoding wild-type MyD88, IL-1 receptor-associated kinase 1 (IRAK-1), and TRAF-6 drove p65-mediated transactivation. In addition, dominant negative forms of MyD88, IRAK-1, and TRAF-6 inhibited the IL-1-induced response. In cells lacking MyD88 or IRAK-1, no effect of IL-1 was observed. Together, these results indicate that MyD88, IRAK-1, and TRAF-6 are important downstream regulators of IL-1-mediated p65 transactivation. We have previously shown that the low-molecular-weight G protein Rac1 is involved in this response. Constitutively active RacV12-mediated transactivation was not inhibited by dominant negative MyD88, while dominant negative RacN17 inhibited the MyD88-driven response, placing Rac1 downstream of MyD88 on this pathway. Dominant negative RacN17 inhibited wild-type IRAK-1- and TRAF-6-induced transactivation, and in turn, dominant negative IRAK-1 and TRAF-6 inhibited the RacV12-driven response, suggesting a mutual codependence of Rac1, IRAK-1, and TRAF-6 in regulating this pathway. Finally, Rac1 was found to associate with the receptor complex via interactions with both MyD88 and the IL-1 receptor accessory protein. A pathway emanating from MyD88 and involving IRAK-1, TRAF-6, and Rac1 is therefore involved in transactivation of gene expression by the p65 subunit of NF-kappaB in response to IL-1.  相似文献   

4.
Supramaximal stimulation of isolated pancreatic acini with specific agonists such as CCK induces the formation of large basolateral blebs, redistributes filamentous actin, and inhibits secretion. Rho family small G proteins are well documented for their function in actin reorganization that determines cell shape and have been suggested to play a role in secretion. Here, we determined whether Rho and Rac are involved in the morphological changes, actin redistribution, and inhibition of amylase secretion induced by high concentrations of CCK. Introduction of constitutively active RhoV14 and RacV12 but not Cdc42V12 in mouse pancreatic acini by adenoviral vectors stimulated acinar morphological changes including basolateral protrusions, increased the total amount of F-actin, and reorganized the actin cytoskeleton. Dominant-negative RhoN19, Clostridium botulinum C3 exotoxin, which inhibits Rho, and dominant-negative RacN17 all partially blocked CCK-induced acinar morphological changes and actin redistribution. To study the correlation between actin polymerization and acinar shape changes, two marine toxins were employed. Jasplakinolide, a reagent that facilitates actin polymerization and stabilizes F-actin, stimulated acinar basolateral protrusions, whereas latrunculin, which sequesters actin monomers, blocked CCK-induced acinar blebbing. Unexpectedly, RhoV14, RacV12, and jasplakinolide all increased amylase secretion by CCK from 30 pM to 10 nM. The data suggest that Rho and Rac are involved in CCK-evoked changes in acinar morphology, actin redistribution, and secretion and that inhibition of secretion by high concentrations of CCK is not directly coupled to the changes in acinar morphology.  相似文献   

5.
Endothelial barrier function is regulated at the cellular level by cytoskeletal-dependent anchoring and retracting forces. In the present study we have examined the signal transduction pathways underlying agonist-stimulated reorganization of the actin cytoskeleton in human umbilical vein endothelial cells. Receptor activation by thrombin, or the thrombin receptor (proteinase-activated receptor 1) agonist peptide, leads to an early increase in stress fiber formation followed by cortical actin accumulation and cell rounding. Selective inhibition of thrombin-stimulated signaling systems, including Gi/o (pertussis toxin sensitive), p42/p44, and p38 MAP kinase cascades, Src family kinases, PI-3 kinase, or S6 kinase pathways had no effect on the thrombin response. In contrast, staurosporine and KT5926, an inhibitor of myosin light chain kinase, effectively blocked thrombin-induced cell rounding and retraction. The contribution of Rho to these effects was analyzed by using bacterial toxins that either activate or inhibit the GTPase. Escherichia coli cytotoxic necrotizing factor 1, an activator of Rho, induced the appearance of dense actin cables across cells without perturbing monolayer integrity. Accordingly, lysophosphatidic acid, an activator of Rho-dependent stress fiber formation in fibroblasts, led to reorganization of polymerized actin into stress fibers but failed to induce cell rounding. Inhibition of Rho with Clostridium botulinum exoenzyme C3 fused to the B fragment of diphtheria toxin caused loss of stress fibers with only partial attenuation of thrombin-induced cell rounding. The implication of Rac and Cdc42 was analyzed in transient transfection experiments using either constitutively active (V12) or dominant-interfering (N17) mutants. Expression of RacV12 mimicked the effect of thrombin on cell rounding, and RacN17 blocked the response to thrombin, whereas Cdc42 mutants were without effect. These observations suggest that Rho is involved in the maintenance of endothelial barrier function and Rac participates in cytoskeletal remodeling by thrombin in human umbilical vein endothelial cells.  相似文献   

6.
Formation of the immunological synapse (IS) in T cells involves large scale molecular movements that are mediated, at least in part, by reorganization of the actin cytoskeleton. Various signaling proteins accumulate at the IS and are localized in specialized membrane microdomains, known as lipid rafts. We have shown previously that lipid rafts cluster and localize at the IS in antigen-stimulated T cells. Here, we provide evidence that lipid raft polarization to the IS depends on an intracellular pathway that involves Vav1, Rac, and actin cytoskeleton reorganization. Thus, lipid rafts did not translocate to the IS in Vav1-deficient (Vav1-/-) T cells upon antigen stimulation. Similarly, T cell receptor transgenic Jurkat T cells also failed to translocate lipid rafts to the IS when transfected with dominant negative Vav1 mutants. Raft polarization induced by membrane-bound cholera toxin cross-linking was also abolished in Jurkat T cells expressing dominant negative Vav1 or Rac mutants and in cells treated with inhibitors of actin polymerization. However, Vav overexpression that induced F-actin polymerization failed to induce lipid rafts clustering. Therefore, Vav is necessary, but not sufficient, to regulate lipid rafts clustering and polarization at the IS, suggesting that additional signals are required.  相似文献   

7.
8.
The actin cytoskeleton has long been implicated in protein secretion. We investigated whether Rho and Rac, known regulators of the cytoskeleton, are involved in amylase secretion by mouse pancreatic acini. Secretagogues, including cholecystokinin (CCK) and the acetylcholine analog carbachol, increased the amount of GTP-bound RhoA and Rac1 and induced translocation from cytosol to a membrane fraction. Immunocytochemistry revealed the translocation of Rho and Rac within the apical region of the cell. Expression by means of adenoviral vectors of dominant-negative Rho (RhoN19), dominant-negative Rac (RacN17), and Clostridium Botulinum C3 exotoxin, which ADP ribosylates and inactivates Rho, significantly inhibited amylase secretion by CCK and carbachol; inhibiting both Rho and Rac resulted in a greater reduction. This inhibitory effect of RhoN19 on CCK-induced amylase secretion was apparent in both the early and late phases of secretion, whereas RacN17 was more potent on the late phase of secretion. None of these three affected the basal Ca2+ or the peak intracellular Ca2+ concentration stimulated by CCK. Latrunculin, a marine toxin that sequesters actin monomers, time-dependently decreased the total amount of filamentous actin (F-actin) and dose-dependently decreased secretion by secretagogues without affecting Ca2+ signaling. These data suggest that Rho and Rac are both involved in CCK-induced amylase release in pancreatic acinar cell possibly through an effect on the actin cytoskeleton. cholecystokinin; carbachol; pancreas; cytoskeleton  相似文献   

9.
Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of alpha beta T cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-kappaB (I kappa B). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts alpha beta T cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages.  相似文献   

10.
Activated Raf kinases and Rac GTPases were shown to cooperate in the oncogenic transformation of fibroblasts, which is characterised by the disassembly of the cellular actin cytoskeleton, a nearly complete loss of focal adhesion complexes and deregulated cell proliferation. This is surprising since the Rac GTPase induces actin structures and the adhesion of suspended cells to extracellular matrix proteins. NIH 3T3 cells expressing a hydroxytamoxifen-inducible oncogenic c-Raf-1-oestrogen receptor fusion protein (c-Raf-1-BxB-ER, N-BxB-ER cells) undergo morphological transformation upon stimulation of the Raf kinase. We show that treatment with the Rac, Rho and Cdc42 activating Escherichia coli toxin CNF1 or coexpression of an activated RacV12 mutant partially inhibits and reverses the disassembly of cellular actin structures and focal adhesion complexes by oncogenic Raf. Activation of the Rac GTPase restores actin structures and focal adhesion complexes at the cellular boundary, leading to spreading of the otherwise spindle-shaped Raf-transformed cells. Actin stress fibres, however, which are regulated by the function of the Rho GTPase, are disassembled by oncogenic Raf even in the presence of activated Rac and Rho. With respect to the RacV12-mediated spreading of Raf-transformed cells, we postulate an anti-oncogenic function of the activated Rac. Another feature of cell transformation is the deregulation of cell cycle control. NIH 3T3 cells expressing high levels of the c-Raf-1-BxB-ER protein undergo a cell cycle arrest upon stimulation of the oncogenic Raf kinase. Our results show that in N-BxB-ER-RacV12 cells the expression of the activated RacV12 mediates cell proliferation in the presence of high-intensity Raf signals and high levels of the Cdk inhibitor p21(Cip1). These results indicate a pro-oncogenic function of the Rac GTPase with respect to the deregulation of cell cycle control.  相似文献   

11.
12.
CD47 is a ubiquitously expressed membrane protein with an extracellular Ig domain and a multiple membrane-spanning domain that can synergize with antigen to induce interleukin (IL)-2 secretion by T lymphocytes. Ligation of CD47 induced actin polymerization and increased protein kinase Ctheta (PKCtheta) association with the cytoskeleton independent of antigen receptor ligation, but ligation of mutant forms of the molecule missing either the Ig domain or the multiple membrane-spanning domain did not. Simultaneous ligation of CD47 and CD3 led to additive effects on F-actin and synergistic effects on PKCtheta cytoskeletal association. Disruption of membrane rafts by removal of cholesterol with cyclodextrin blocked CD47-induced actin polymerization, and mutant forms of CD47 that localized poorly to rafts failed to effect cytoskeletal rearrangement. However, raft association alone was not sufficient, because a raft-localized CD47 Ig domain bound to the membrane by a glycan phosphoinositol anchor was unable to induce actin polymerization. A mutant form of CD47 without its Ig domain that did not induce actin polymerization or localize to rafts still enhanced T cell receptor (TCR)-dependent tyrosine phosphorylation of PLCgamma and associated Ca(2+) signaling but did not augment IL-2 secretion. Thus, CD47 synergy with TCR to increase [Ca(2+)](i) is independent of actin and rafts but is insufficient to explain CD47 cooperation with TCR in IL-2 synthesis. Full synergy with TCR requires CD47 localization to membrane rafts where ligation leads to TCR-independent signals causing actin polymerization and PKCtheta translocation.  相似文献   

13.
During infection, enteropathogenic Escherichia coli (EPEC) injects effector proteins into the host cell to manipulate the actin cytoskeleton and promote formation of actin pedestals. IQGAP1 is a multidomain protein that participates in numerous cellular functions, including Rac1/Cdc42 and Ca(2+)/calmodulin signaling and actin polymerization. Here we report that IQGAP1, Ca(2+), and calmodulin modulate actin pedestal formation by EPEC. Infection with EPEC promotes both the interaction of IQGAP1 with calmodulin and the localization of IQGAP1 and calmodulin to actin pedestals while reducing the interaction of IQGAP1 with Rac1 and Cdc42. IQGAP1-null fibroblasts display a reduced polymerization of actin in response to EPEC. In addition, antagonism of calmodulin or chelation of intracellular Ca(2+) reduces EPEC-dependent actin polymerization. Furthermore, IQGAP1 specifically interacts with Tir in vitro and in cells. Together these data identify IQGAP1, Ca(2+), and calmodulin as a novel signaling complex regulating actin pedestal formation by EPEC.  相似文献   

14.
The SH3-SH3-SH3-SH2 adapter Nck represents a two-gene family that includes Nckalpha (Nck) and Nckbeta (Grb4/Nck2), and it links receptor tyrosine kinases to intracellular signaling networks. The function of these mammalian Nck genes has not been established. We report here a specific role for Nckbeta in platelet-derived growth factor (PDGF)-induced actin polymerization in NIH 3T3 cells. Overexpression of Nckbeta but not Nckalpha blocks PDGF-stimulated membrane ruffling and formation of lamellipoda. Mutation in either the SH2 or the middle SH3 domain of Nckbeta abolishes its interfering effect. Nckbeta binds at Tyr-1009 in human PDGF receptor beta (PDGFR-beta) which is different from Nckalpha's binding site, Tyr-751, and does not compete with phosphatidylinositol-3 kinase for binding to PDGFR. Microinjection of an anti-Nckbeta but not an anti-Nckalpha antibody inhibits PDGF-stimulated actin polymerization. Constitutively membrane-bound Nckbeta but not Nckalpha blocks Rac1-L62-induced membrane ruffling and formation of lamellipodia, suggesting that Nckbeta acts in parallel to or downstream of Rac1. This is the first report of Nckbeta's role in receptor tyrosine kinase signaling to the actin cytoskeleton.  相似文献   

15.
Cytoskeletal involvement in the response to TCR/CD3 ligation and in signal transduction was investigated in a murine Th cell type 2 clone. Cells coated with the hamster anti-CD3 mAb, 145-2C11 (2C11 mAb), and exposed to goat anti-hamster demonstrated an increase in polymerized actin as well as an increase in inositol phospholipid hydrolysis mediated by activation of phospholipase C. Pretreatment with cytochalasins (Cyt) (D or B), drugs that interact with cellular actin, prevented actin polymerization, and augmented the initial rate and total amount of inositol phosphates produced. Drugs modifying microtubule function were ineffective. The intracellular Ca2+ rise attributed to InsP3 and InsP4 generated in response to CD3 perturbation was augmented by CytD. CytD treatment did not affect inositol phosphate generation resulting from the stimulation of guanine nucleotide-binding proteins with aluminium tetrafluoride, indicating that the action of CytD was specific for receptor-mediated inositol phospholipids. CytD decreased the rate of anti-CD3-induced receptor internalization. These data suggest that the assembly of microfilaments plays a role in CD3 internalization and that a CytD-sensitive mechanism uncouples the TCR/CD3 complex from phospholipase C-mediated signaling.  相似文献   

16.
PKD is the founding member of a novel protein kinase family that also includes PKD2 and PKD3. PKD has been the focus of most studies up to date, but little is known about the mechanisms that mediate PKD3 activation. Here, we show that addition of aluminum fluoride to COS-7 cells cotransfected with PKD3 and Galpha13 or Galpha12 induced PKD3 activation, which was associated with a transient plasma membrane translocation of cytosolic PKD3. Treatment with Clostridium difficile toxin B blocked PKD3 activation induced by either bombesin or by aluminum fluoride-stimulated Galpha12/13 but did not affect Galphaq-induced PKD3 activation. Furthermore, PKD3 immunoprecipitated from cells cotransfected with a constitutively active Rac (RacV12) exhibited a marked increase in PKD3 basal catalytic activity. In contrast, cotransfection with active Rho (RhoQ63L), Cdc42 (Cdc42Q61L), or Ras (RasV12) did not promote PKD3 activation. Expression of either COOH-terminal dominant-negative fragment of Galpha13 or dominant negative Rac (Rac N17) attenuated bombesin-induced PKD3 activation. Treatment with protein kinase C (PKC) inhibitors prevented the increase in PKD3 activity induced by RacV12 and aluminum fluoride-stimulated Galpha12/13. The catalytic activation of PKD3 in response to RacV12, alpha12/13 signaling or bombesin correlated with Ser-731/Ser-735 phosphorylation in the activation loop of this enzyme. Our results indicate that Galpha12/13 and Rac are important components in the signal transduction pathways that mediate bombesin receptor-induced PKD3 activation.  相似文献   

17.
In mast cells, activation of GTP-binding proteins induces centripetal reorganization of actin filaments. This effect is due to disassembly, relocalization, and polymerization of F-actin and is dependent on two small GTPases, Rac and Rho. Activities of Rac and Rho are also essential for the secretory function of mast cells. In response to GTP-gamma-S and/or calcium, only a proportion of permeabilized mast cells is capable of secretory response. Here, we have compared actin organization of secreting and nonsecreting cell populations. We show that the cytoskeletal and secretory responses are strongly correlated, indicating a common upstream regulator of the two functions. The secreting cell population preferentially displays both relocalization and polymerization of actin. However, when actin relocalization or polymerization is inhibited by phalloidin or cytochalasin, respectively, secretion is unaffected. Moreover, the ability of the constitutively active mutants of Rac and Rho to enhance secretion is also unaffected in the presence of cytochalasin. Therefore, Rac and Rho control these two functions by divergent, parallel signaling pathways. Cortical actin disassembly occurs in both secreting and nonsecreting populations and does not, by itself, induce exocytosis. A model for the control of exocytosis is proposed that includes at least four GTP-binding proteins and suggests the presence of both shared and divergent signaling pathways from Rac and Rho.  相似文献   

18.
In this paper, we describe the characterization of DEF6, a novel PH-DH-like protein related to SWAP-70 that functions as an upstream activator of Rho GTPases. In NIH 3T3 cells, stimulation of the PI 3-kinase signaling pathway with either H2O2 or platelet-derived growth factor (PDGF) resulted in the translocation of an overexpressed DEF6-GFP fusion protein to the cell membrane and induced the formation of filopodia and lamellipodia. In contrast to full-length DEF6, expression of the DH-like (DHL) domain as a GFP fusion protein potently induced actin polymerization, including stress fiber formation in COS-7 cells, in the absence of PI 3-kinase signaling, indicating that it was constitutively active. The GTP-loading of Cdc42 was strongly enhanced in NIH 3T3 cells expressing the DH domain while filopodia formation, membrane ruffling, and stress fiber formation could be inhibited by the co-expression of the DH domain with dominant negative mutants of either N17Rac1, N17Cdc42, or N19RhoA, respectively. This indicated that DEF6 acts upstream of the Rho GTPases resulting in the activation of the Cdc42, Rac1, and RhoA signaling pathways. In vitro, DEF6 specifically interacted with Rac1, Rac2, Cdc42, and RhoA, suggesting a direct role for DEF6 in the activation of Rho GTPases. The ability of DEF6 to both stimulate actin polymerization and bind to filamentous actin suggests a role for DEF6 in regulating cell shape, polarity, and movement.  相似文献   

19.
Lateral compartmentalization of membrane proteins into microdomains regulates signal transduction; however, structural determinants are incompletely understood. Membrane glycoproteins bind galectins in proportion to the number (i.e. NX(S/T) sites) and degree of GlcNAc branching within attached N-glycans, forming a molecular lattice that negatively regulates T cell function and autoimmunity. We find that in resting T cells, partition of CD45 inside and T cell receptor (TCR)/CD4-Lck/Zap-70 outside microdomains is positively and negatively regulated by the galectin lattice and actin cytoskeleton, respectively. In the absence of TCR ligands, the galectin lattice counteracts F-actin to retain CD45 in microdomains while concurrently blocking TCR/CD4-Lck/Zap-70 partition to microdomains by preventing a conformational change in the TCR that recruits Nck/Wiscott Aldrich Syndrome (WASp)/SLP76/F-actin/CD4 to TCR. The counterbalancing activities of the galectin lattice and actin cytoskeleton negatively and positively regulate Lck activity in resting cells and CD45 versus TCR clustering and signaling at the early immune synapse, respectively. Microdomain-localized CD45 inactivates Lck and inhibits TCR signaling at the early immune synapse. Thus, the galectin lattice and actin cytoskeleton interact on opposing sides of the plasma membrane to control microdomain structure and function, coupling basal growth signaling with thresholds to activation.  相似文献   

20.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号