首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation of aldolase 1, the class-I D-fructose 1,6-bisphosphate aldolase (EC4.1.2.13) from Escherichia coli (Crookes' strain), showed it to have unusual kinetic and structural properties. The enzyme appeared to be larger than was previously supposed and may be a decamer with a mol. wt. of approx. 340000. Its fructose 1,6-bisphosphate-cleavage activity was unaffected by these compounds. The enhancement exhibited a strong dependence on pH. These novel kinetic properties do not seem to be shared by any other fructose 1,6-bisphosphate aldolase, but recall the activation by polycarboxylic acids of the deoxyribose 3-phosphate aldolases from some other organisms. In view of its unusual properties, it is unlikely that aldolase 1 from E. coli is closely related to the class-1 aldolases that have been detected in several other prokaryotes, or to the typical class-1 enzymes from eukaryotes.  相似文献   

2.
2-Keto-4-hydroxyglutarate aldolase, which catalyzes the reversible cleavage of 2-keto-4-hydroxyglutarate, yielding pyruvate plus glyoxylate, has been purified from extracts of bovine kidney to apparent homogeneity as judged by polyacrylamide gel electrophoresis, gel filtration chromatography, sucrose density gradient centrifugation, and meniscus depletion sedimentation equilibrium experiments. The enzyme from this source has a native and a subunit mass of 144 and 36 kDa, respectively; the pH-activity optimum is 8.8. Rather than being stimulated, aldolase activity is inhibited to varying degrees by added divalent metal ions, whereas a number of metal ion-chelating agents have no effect. An absolute requirement for added thiol compounds could not be shown, but 2-mercaptoethanol enhances activity 2-fold, and added Hg2+ as well as p-mercuribenzoate or dithiodipyridine markedly inhibit catalysis. Incubation of the enzyme with either pyruvate or glyoxylate in the presence of NaBH4 causes extensive loss of aldolase activity concomitant with stable binding of approximately 1.0-1.5 mol of 14C-labeled substrate/mol of enzyme. The circular dichroism spectrum for native aldolase is characteristic of an alpha-helix; incubation of the enzyme with glyoxylate has no effect on this spectrum, but it is considerably altered by pyruvate. Bovine kidney aldolase shows no stereospecificity in catalyzing the aldol cleavage of the two optical isomers of 2-keto-4-hydroxyglutarate, and although it also catalyzes the beta-decarboxylation of oxalacetate, its decarboxylase/aldolase activity ratio is lower than that seen with the pure enzyme from either bovine liver or Escherichia coli.  相似文献   

3.
4.
5.
Wild-type flavocytochrome b2 (L-lactate dehydrogenase) from the yeast Saccharomyces cerevisiae and three singly substituted mutant forms (F254, R349 and K376) have been expressed in the bacterium Escherichia coli. The enzyme expressed in E. coli contains the protohaem IX and flavin mononucleotide (FMN) prosthetic groups found in the enzyme isolated from yeast, has an electronic absorption spectrum identical with that of the yeast protein and an identical Mr value of 57,500 estimated by SDS/polyacrylamide-gel electrophoresis. N-Terminal amino-acid-sequence data indicate that the flavocytochrome b2 isolated from E. coli begins at position 6 (methionine) when compared with mature flavocytochrome b2 from yeast. The absence of the first five amino acid residues appears to have no effect on the enzyme-catalysed oxidation of L-lactate, since Km values for the yeast- and E. coli-expressed wild-type enzymes were identical within experimental error. The F254 mutant enzyme expressed in E. coli also showed kinetic parameters essentially the same as those found for the enzyme from yeast. The R349 and K376 mutant enzymes had no activity when expressed in either yeast or E. coli. The yield of flavocytochrome b2 from E. coli is estimated to be between 500- and 1000-fold more than from a similar wet weight of yeast (this high level of expression results in E. coli cells which are pink in colour). The increased yield has allowed us to verify the presence of FMN in the R349 mutant enzyme. The advantages of E. coli as an expression system for flavocytochrome b2 are discussed.  相似文献   

6.
Two fructose diphosphate aldolases (EC 4.1.2.13) were detected in extracts of Escherichia coli (Crookes' strain) grown on pyruvate or lactate. The two enzymes can be resolved by chromatography on DEAE-cellulose at pH7.5, or by gel filtration on Sephadex G-200, and both have been obtained in a pure state. One is a typical bacterial aldolase (class II) in that it is strongly inhibited by metal-chelating agents and is reactivated by bivalent metal ions, e.g. Ca(2+), Zn(2+). It is a dimer with a molecular weight of approx. 70000, and the K(m) value for fructose diphosphate is about 0.85mm. The other aldolase is not dependent on metal ions for its activity, but is inhibited by reduction with NaBH(4) in the presence of substrate. The K(m) value for fructose diphosphate is about 20mum (although the Lineweaver-Burk plot is not linear) and the enzyme is probably a tetramer with molecular weight approx. 140000. It has been crystallized. On the basis of these properties it is tentatively assigned to class I. The appearance of a class I aldolase in bacteria was unexpected, and its synthesis in E. coli is apparently favoured by conditions of gluconeogenesis. Only aldolase of class II was found in E. coli that had been grown on glucose. The significance of these results for the evolution of fructose diphosphate aldolases is briefly discussed.  相似文献   

7.
Ca and S deficiencies cause a strong, N, P and Mg deficiencies a slight, and K deficiency an intermediate decrease in the aldolase activity of Eureka lemon leaves. Fe and Zn deficiencies result in a moderate decrease in the activity. Cysteine increases the enzyme activity (approximately 30 %). Opposed to with yeast aldolase, EDTA inhibits the enzyme activity only moderately in control (full nutrient) lemon leaves nor does Zn EDTA restore it. Gel electrophoresis of yeast and lemon leaves' aldolase isoenzymes also exhibited different patterns. Dialysis studies and other reactivation experiments with different ions failed to establish specific metal requirements of the aldolase in the lemon leaves. However, infiltration of Zn into Zn-deficient detached and intact citrus leaves brought about a partial restoration of the enzyme activity. In view of these results, the relationship between the citrus leaf enzyme and the varying types of aldolase enzymes is discussed.  相似文献   

8.
Treatment of homogeneous preparations of Escherichia coli 2-keto-4-hydroxyglutarate aldolase with 1,2-cyclohexanedione, 2,3-butanedione, phenylglyoxal, or 2,4-pentanedione results in a time- and concentration-dependent loss of enzymatic activity; the kinetics of inactivation are pseudo-first order. Cyclohexanedione is the most effective modifier; a plot of log (1000/t 1/2) versus log [cyclohexanedione] gives a straight line with slope = 1.1, indicating that one molecule of modifier reacts with each active unit of enzyme. The kinetics of inactivation are first order with respect to cyclohexanedione, suggesting that the loss of activity is due to modification of 1 arginine residue/subunit. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced structural alteration of the aldolase. The same Km but decreased Vmax values are obtained when partially inactivated enzyme is compared with native. Amino acid analyses of 95% inactivated aldolase show the loss of 1 arginine/subunit with no significant change in other amino acid residues. Considerable protection against inactivation is provided by the substrates 2-keto-4-hydroxyglutarate and pyruvate (75 and 50%, respectively) and to a lesser extent (40 and 35%, respectively) by analogs like 2-keto-4-hydroxybutyrate and 2-keto-3-deoxyarabonate. In contrast, formaldehyde or glycolaldehyde (analogs of glyoxylate) under similar conditions show no protective effect. These results indicate that an arginine residue is required for E. coli 2-keto-4-hydroxyglutarate aldolase activity; it most likely participates in the active site of the enzyme by interacting with the carboxylate anion of the pyruvate-forming moiety of 2-keto-4-hydroxyglutarate.  相似文献   

9.
Aldolase A derived from a hemolytic anemia patient with aldolase A deficiency was shown to have an amino acid substitution of glycine for aspartic acid at the 128th position (Asp-128) in the enzyme [Kishi et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8623-8627]. We constructed an Escherichia coli expression plasmid, pHAAD128G, which carries the mutant aldolase A [aldolase A(D-G)] cDNA, and the enzyme generated in E. coli transfected with the expression plasmid was purified and characterized. Conversion of Asp to Gly at the 128th position in the enzyme rendered the enzyme thermolabile and susceptible to tryptic digestion. CD spectra analysis also revealed that the mutant enzyme had a remarkable conformation change with a decrease of regular form in the molecule. Addition of glycerol or some other polyalcohols during thermal treatment protected this altered enzyme (but not the normal enzyme) against denaturation and activity decrease. In order to determine the function of the amino acid residue at the 128th position, two artificial mutant enzymes with the substitutions of Glu for Asp [aldolase A(D-E)] and Ser for Asp [aldolase A(D-S)], respectively, at the position were constructed by site-directed mutagenesis and characterized. These analyses demonstrated the necessity for Asp to be present at the 128th residue in order for this enzyme to be thermally stable.  相似文献   

10.
The Escherichia coli gene which encodes N-acetylneuraminic acid aldolase was isolated by the polymerase chain reaction, cloned into the inducible expression vector pTTQ18, and overexpressed in E. coli. The high yield of aldolase was achieved through both optimum growth of cells and efficient expression of the aldolase gene (20-30% soluble cellular protein). The recombinant enzyme was purified to homogeneity with an activity of 1.2-2.2 U/mg, which compared favorably with that of commercial preparations of E. coli aldolase (1.1 U/mg) and Clostridium perfringens aldolase (0.4 U/mg). The cloning strategy, fermentation conditions, purification protocol, and activity assay are described.  相似文献   

11.
A yeast cDNA genetic library in a bacteriophage expression vector was screened using an antiserum reacting with fructose 1,6-bisphosphate aldolase from Saccharomyces cerevisiae. Radio-labelled probes of selected immunopositive clones were used for screening of a yeast genomic library. From the genomic clones a yeast/Escherichia coli shuttle plasmid was constructed containing on a 1990-base-pair fragment the entire structural gene FBA1 coding for yeast aldolase. The primary structure of the FBA1 gene was determined. An open reading frame comprises 1077 base pairs coding for a protein of 359 amino acids with a predicted molecular mass of 39,608 Da. As observed for other strongly expressed yeast genes, codon usage is extremely biased. The 810 base pairs at the 5' end and the 90 base pairs at the 3' end of the coding region of the cloned FBA1 gene are sufficient for normal expression and show characteristic elements present in the noncoding sequences of other yeast genes. Aldolase is the major protein in yeast cells transformed with a high-copy-number plasmid containing the FBA1 gene. The aldolase gene was disrupted by insertion of the yeast URA3 gene into the coding region of one FBA1 allele in a homozygous diploid ura3 strain. The haploid offsprings with the defective aldolase allele fba1::URA3 lack aldolase enzymatic activity and fail to grow in media containing as a carbon source metabolites of only one side of the aldolase reaction.  相似文献   

12.
The Class II fructose 1,6-bisphosphate aldolase (fda, Rv0363c) from the pathogen Mycobacterium tuberculosis H37RV was subcloned in the Escherichia coli vector pT7-7 and purified to near homogeneity. The specific activity (35 U/mg) is approximately 9 times higher than previously reported for the enzyme partially purified from the pathogen. Attempts to express the enzyme with an N-terminal fusion tag yielded inactive, mostly insoluble protein. The native recombinant enzyme is zinc-dependent and has a catalytic efficiency for fructose 1,6-bisphosphate cleavage higher than most Class II aldolases characterized to date. The aldolase has a Km of 20 microM, a kcat of 21 s(-1), and a pH optimum of 7.8. The molecular mass of the enzyme subunits as determined by mass spectrometry is in agreement with the mass calculated on the basis of its gene sequence minus the terminal methionine, 36,413 Da. The enzyme is a homotetramer and retains only two zinc ions per tetramer when transferred to a metal-free buffer, as determined by ICP-MS and by a colorimetric assay using 4-(2-pyridylazo)-resorcinol (PAR) as a chelator. The E. coli expression system reported in this study will facilitate the further characterization of this enzyme and the screening for potential inhibitors.  相似文献   

13.
We have cloned an open reading frame from the Escherichia coli K-12 chromosome that had been assumed earlier to be a transaldolase or a transaldolase-related protein, termed MipB. Here we show that instead a novel enzyme activity, fructose-6-phosphate aldolase, is encoded by this open reading frame, which is the first report of an enzyme that catalyzes an aldol cleavage of fructose 6-phosphate from any organism. We propose the name FSA (for fructose-six phosphate aldolase; gene name fsa). The recombinant protein was purified to apparent homogeneity by anion exchange and gel permeation chromatography with a yield of 40 mg of protein from 1 liter of culture. By using electrospray tandem mass spectroscopy, a molecular weight of 22,998 per subunit was determined. From gel filtration a size of 257,000 (+/- 20,000) was calculated. The enzyme most likely forms either a decamer or dodecamer of identical subunits. The purified enzyme displayed a V(max) of 7 units mg(-)1 of protein for fructose 6-phosphate cleavage (at 30 degrees C, pH 8.5 in 50 mm glycylglycine buffer). For the aldolization reaction a V(max) of 45 units mg(-)1 of protein was found; K(m) values for the substrates were 9 mm for fructose 6-phosphate, 35 mm for dihydroxyacetone, and 0.8 mm for glyceraldehyde 3-phosphate. FSA did not utilize fructose, fructose 1-phosphate, fructose 1,6-bisphosphate, or dihydroxyacetone phosphate. FSA is not inhibited by EDTA which points to a metal-independent mode of action. The lysine 85 residue is essential for its action as its exchange to arginine (K85R) resulted in complete loss of activity in line with the assumption that the reaction mechanism involves a Schiff base formation through this lysine residue (class I aldolase). Another fsa-related gene, talC of Escherichia coli, was shown to also encode fructose-6-phosphate aldolase activity and not a transaldolase as proposed earlier.  相似文献   

14.
15.
In Escherichia coli K-12, the rise in activity of thymidine phosphorylase, phosphodeoxyribomutase, and deoxyribose-5-phosphate aldolase caused by exogenous thymidine is dependent on the synthesis of new enzyme protein. Phosphodeoxyribomutase is induced by the purine ribonucleosides adenosine and guanosine, whereas the other two enzymes are not. The mutase activity induced by thymidine and by the purine ribonucleosides has been shown to be the same enzyme by four different criteria. This independent induction of phosphodeoxyribomutase suggests that the gene for this enzyme is in an operon different from the one that may contain the genes for thymidine phosphorylase and deoxyribose-5-phosphate aldolase.  相似文献   

16.
The nucleotide sequence of a patient's aldolase B gene was determined and showed a substitution of a single nucleotide (C----A) at position 720 in the coding region, which resulted in the 240th amino acid, a cysteine, being changed to a stop codon (TGC----TGA). By an allele-specific oligonucleotide probe and polymerase chain reaction, the patient was shown to be homozygous for the mutation. To examine whether this mutation causes functional defect of the enzyme, the activity of the aldolase B from the patient, expressed in Escherichia coli by using expression plasmid, was measured. No activity was observed, and the predicted product was recovered from E. coli expression plasmid, indicating that this nonsense mutation was the cause of aldolase B deficiency.  相似文献   

17.
The effect of N-methyl-N-nitrosourea (MNU) on the activity of cytoplasmic and reversibly bound to subcellular structures liver aldolase was studied. In vitro, the activity of aldolase purified from rabbit muscles is inhibited by MNU by 70-80% relative to fructose-1,6-diphosphate and by 50-60% relative to fructose-1-phosphate. These substrates and the competitive inhibitor ATP do not protect the enzyme against the inactivation by MNU. MNU inhibits the activity of cytoplasmic aldolase by 30-40% and 20% 2-24 hours after a single injection (80 mg/kg) in vivo. The enzyme affinity for fructose-1,6-diphosphate is markedly decreased (2-fold). Activation of cytoplasmic aldolase relative to both substrates, which is especially well-pronounced with fructose-1-phosphate after inhibition of the enzyme activity, was observed. The enzyme activity relative to both substrates was found to increase in the mitochondrial and nuclear fractions within 48 hours. MNU has no effect on the activity of aldolase bound to microsomes. MNU influences the aldolase binding to organelle membranes. MNU injections at early periods (2-168 hours) accounts for the differences in the kinetic properties of cytoplasmic and reversibly bound to subcellular structures liver aldolase. These changes persist within 168 hours after MNU administration and may result in disturbances in cell metabolism as well as in the regulation of metabolic pathways, such as glycolysis and gluconeogenesis.  相似文献   

18.
Fructose-1,6-bisphosphate aldolase from the thermophilic eubacteria, Thermus aquaticus YT-1, was cloned and sequenced. Nucleotide-sequence analysis revealed an open reading frame coding for a 33-kDa protein of 305 amino acids having amino acid sequence typical of thermophilic adaptation. Multiple sequence alignment classifies the enzyme as a class II B aldolase that shares similarity with aldolases from other extremophiles: Thermotoga maritima, Aquifex aeolicus, and Helicobacter pylori (49--54% identity, 76--81% homology). Taq FBP aldolase was overexpressed under tac promoter control in Escherichia coli and purified to homogeneity using heat treatment followed by two chromatographic steps. Yields of 40--50 mg of monodisperse protein were obtained per liter of culture. The quaternary structure is that of a homotetramer stabilized by an apparent 21-amino-acid insertion sequence. The recombinant protein is thermostable for at least 45 min at 80 degrees C with little residual activity below 60 degrees C. Kinetic characterization at 70 degrees C, the optimal growth temperature for T. aquaticus, indicates extreme negative subunit cooperativity (h = 0.32) with a limiting K(m) of 305 microM. The maximal specific activity (V(max)) is 46 U/mg at 70 degrees C.  相似文献   

19.
Six mutants lacking the glycolytic enzyme fructose 1,6-bisphosphate aldolase have been isolated in the yeast Saccharomyces cerevisiae by inositol starvation. The mutants grown on gluconeogenic substrates, such as glycerol or alcohol, and show growth inhibition by glucose and related sugars. The mutations are recessive, segregate as one gene in crosses, and fall in a single complementation group. All of the mutants synthesize an antigen cross-reacting to the antibody raised against yeast aldolase. The aldolase activity in various mutant alleles measured as fructose 1,6-bisphosphate cleavage is between 1 to 2% and as condensation of triose phosphates to fructose 1,6-bisphosphate is 2 to 5% that of the wild-type. The mutants accumulate fructose 1,6-bisphosphate from glucose during glycolysis and dihydroxyacetone phosphate during gluconeogenesis. This suggests that the aldolase activity is absent in vivo.  相似文献   

20.
B?ck, August (Purdue University, Lafayette, Ind.), and Frederick C. Neidhardt. Isolation of a mutant of Escherichia coli with a temperature-sensitive fructose-1,6-diphosphate aldolase activity. J. Bacteriol. 92:464-469. 1966.-A mutant of Escherichia coli was isolated which was able to grow in rich medium at 30 C but not at 40 C. Upon exposure to 40 C, the cells immediately stopped ribonucleic acid (RNA) and deoxyribonucleic acid synthesis, but protein synthesis continued at a diminished rate for a short time. Addition of chloramphenicol did not release RNA synthesis from inhibition at 40 C. Synthesis of beta-galactosidase could be induced at high temperature despite the presence of glucose in the medium, indicating a lesion in glucose catabolism. Of many catabolic enzymes tested in cell-free extracts, only fructose-1,6-diphosphate aldolase activity appeared to be altered in the mutant cells. No activity was demonstrable in extracts of mutant cells grown at either 30 or 40 C, but determination of glucose-oxidation patterns revealed that the enzyme is probably active in vivo at 30 C. Temperature-resistant secondary mutants were found to have partially or fully restored aldolase activity, and temperature-resistant recombinants had normal aldolase activity, indicating that the growth pattern and the altered aldolase had a common genetic basis. Linkage data permitted the assignment of an approximate map location for the mutated aldolase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号