首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bipedalism is a defining feature of the hominin lineage, but the nature and efficiency of early hominin walking remains the focus of much debate. Here, we investigate walking cost in early hominins using experimental data from humans and chimpanzees. We use gait and energetics data from humans, and from chimpanzees walking bipedally and quadrupedally, to test a new model linking locomotor anatomy and posture to walking cost. We then use this model to reconstruct locomotor cost for early, ape-like hominins and for the A.L. 288 Australopithecus afarensis specimen. Results of the model indicate that hind limb length, posture (effective mechanical advantage), and muscle fascicle length contribute nearly equally to differences in walking cost between humans and chimpanzees. Further, relatively small changes in these variables would decrease the cost of bipedalism in an early chimpanzee-like biped below that of quadrupedal apes. Estimates of walking cost in A.L. 288, over a range of hypothetical postures from crouched to fully extended, are below those of quadrupedal apes, but above those of modern humans. These results indicate that walking cost in early hominins was likely similar to or below that of their quadrupedal ape-like forebears, and that by the mid-Pliocene, hominin walking was less costly than that of other apes. This supports the hypothesis that locomotor energy economy was an important evolutionary pressure on hominin bipedalism.  相似文献   

2.
Lower-to-upper limb-bone proportions give valuable clues to locomotor behavior in fossil taxa. However, to date only external linear dimensions have been included in such analyses of early hominins. In this study, cross-sectional measures of femoral and humeral diaphyseal strength are determined for the two most complete early Homo erectus (or ergaster) associated skeletons--the juvenile KNM-WT 15000 and the adult KNM-ER 1808. Modern comparative samples include an adult human skeletal sample representative of diverse body shapes, a human longitudinal growth series, and an adult chimpanzee sample. When compared to appropriately age-matched samples, both H. erectus specimens fall very close to modern human mean proportions and far from chimpanzee proportions (which do not overlap with those of humans). This implies very similar mechanical load-sharing between the lower and upper limbs, and by implication, similar locomotor behavior in early H. erectus and modern humans. Thus, by the earliest Pleistocene (1.7 Ma), completely modern patterns of bipedal behavior were fully established in at least one early hominin taxon.  相似文献   

3.
The costs of different modes of bipedalism are a key issue in reconstructing the likely gait of early human ancestors such as Australopithecus afarensis. Some workers, on the basis of morphological differences between the locomotor skeleton of A. afarensis and modern humans, have proposed that this hominid would have walked in a 'bent-hip, bent-knee' (BHBK) posture like that seen in the voluntary bipedalism of untrained chimpanzees. Computer modelling studies using inverse dynamics indicate that on the basis of segment proportions AL-288-1 should have been capable of mechanically effective upright walking, but in contrast predicted that BHBK walking would have been highly ineffective. The measure most pertinent to natural selection, however, is more likely to be the complete, physiological, or metabolic energy cost. We cannot measure this parameter in a fossil. This paper presents the most complete investigation yet of the metabolic and thermoregulatory costs of BHBK walking in humans. Data show that metabolic costs including the basal metabolic rate (BMR) increase by around 50% while the energy costs of locomotion and blood lactate production nearly double, heat load is increased, and core temperature does not return to normal within 20 minutes rest. Net effects imply that a resting period of 150% activity time would be necessary to prevent physiologically intolerable heat load. Preliminary data for children suggest that scaling effects would not significantly reduce relative costs for hominids of AL-288-1's size. Data from recent studies using forwards dynamic modelling confirm that similar total (including BMR) and locomotor metabolic costs would have applied to BHBK walking by AL-288-1. We explore some of the ecological consequences of our findings.  相似文献   

4.
1964年在陕西公王岭发现的蓝田人头骨的形态比周口店直立人和印度尼西亚爪哇直立人原始,其厚重的骨壁及较小的脑量,落入了早期人属成员的变异范围。最新测年结果将蓝田人的生存年代从原先普遍接受的距今115万年提早到大约163万年前,接近能人和南方古猿生存年代变异范围的下限,蓝田人是迄今为止我国发现的有确定年代数据的最早的古人类化石。本文采用高分辨率CT技术对蓝田人的颞骨岩部进行了扫描,对骨性内耳迷路进行了3D虚拟复原,通过与和县直立人、欧洲古老型智人、早期人属成员、南方古猿非洲种、粗壮傍人和现代人内耳迷路的21项测量项目的对比和分析,结果显示蓝田人内耳迷路的测量数据与南方古猿非洲种最接近,其次为现代人和欧洲古老型智人,而与早期人属成员和粗壮傍人相差较大。主成分分析结果显示,蓝田人内耳迷路与早期人属成员、欧洲古老型智人、南方古猿非洲种及现代人都有重叠区域,距离最近的是南方古猿非洲种Sts 5,其次为和县直立人和南方古猿非洲种Sts 19,而与粗壮傍人距离较远。本文研究提供了中更新世中国古人类内耳迷路的形态数据,为进一步探讨蓝田人体质特征演化上的意义提供了参考资料。  相似文献   

5.
It is often claimed that the walking gaits of primates are unusual because, unlike most other mammals, primates appear to have higher vertical peak ground reaction forces on their hindlimbs than on their forelimbs. Many researchers have argued that this pattern of ground reaction force distribution is part of a general adaptation to arboreal locomotion. This argument is frequently used to support models of primate locomotor evolution. Unfortunately, little is known about the force distribution patterns of primates walking on arboreal supports, nor do we completely understand the mechanisms that regulate weight distribution in primates. We collected vertical peak force data for seven species of primates walking quadrupedally on instrumented terrestrial and arboreal supports. Our results show that, when walking on arboreal vs. terrestrial substrates, primates generally have lower vertical peak forces on both limbs but the difference is most extreme for the forelimb. We found that force reduction occurs primarily by decreasing forelimb and, to a lesser extent, hindlimb stiffness. As a result, on arboreal supports, primates experience significantly greater functional differentiation of the forelimb and hindlimb than on the ground. These data support long-standing theories that arboreal locomotion was a critical factor in the differentiation of the forelimbs and hindlimbs in primates. This change in functional role of the forelimb may have played a critical role in the origin of primates and facilitated the evolution of more specialized locomotor behaviors.  相似文献   

6.
The consequences of the relatively short lower limbs characteristic of AL 288-1 have been widely discussed, as have the causes and consequences of the short limbs of Neanderthals. Previous studies of the effect of limb length on the energetic cost of locomotion have reported no relationship; however, limb length could have accounted for as much as 19% of the variation in cost and gone undetected (Steudel and Beattie, 1995; Steudel, 1994, 1996). Kramer (1999) and Kramer and Eck (2000) have recently used a theoretical model to predict the effect of the shorter limbs of early hominids, concluding that the shorter limbs may actually have been energetically advantageous. Here, we took an experimental approach. Twenty-one human subjects, of varying limb lengths, walked on a treadmill at 2.6, 2.8, 3.0 and 3.2m.p.h., while their expired gases were analyzed. The subjects walked for 12 minutes at each speed and their rates of oxygen consumption (VO2) over four minutes were averaged to estimate VO2. We also measured each subject's height, weight and lower limb length. Lean body mass and % fat were determined using dual-energy x-ray absorptiometry. ANCOVA with total VO2 at either speed as the dependent variable and total lean mass, % fat and lower limb length as covariates resulted in all three covariates having a significant positive effect on VO2 at p<0.01. Subjects with relatively longer lower limbs had lower locomotor costs. Thus the short lower limbs characteristic of some hominid taxa would have resulted in more costly locomotion, barring some physiological anomaly. The magnitude of this effect is substantial; Neanderthals are estimated to have had locomotor costs 30% greater than those of contemporary anatomically modern humans. By contrast the increase in lower limb length seen in H. erectus would have mitigated the increase in locomotor costs produced by the increase in body size.  相似文献   

7.
The remarkable partial adult skeleton (LB1) excavated from Liang Bua cave on the island of Flores, Indonesia, has been attributed to a new species, Homo floresiensis, based upon a unique mosaic of primitive and derived features compared to any other hominin. The announcement precipitated widespread interest, and attention quickly focused on its possible affinities. LB1 is a small-bodied hominin with an endocranial volume of 380-410 cm3, a stature of 1m, and an approximate geological age of 18,000 years. The describers [Brown, P., Sutikna, T., Morwood, M.J., Soejono, R.P., Jatmiko, Wayhu Saptomo, E., Awe Due, R., 2004. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431, 1055-1061] originally proposed that H. floresiensis was the end product of a long period of isolation of H. erectus or early Homo on a small island, a process known as insular dwarfism. More recently Morwood, Brown, and colleagues [Morwood, M.J., Brown, P., Jatmiko, Sutikna, T., Wahyu Saptomo, E., Westaway, K.E., Awe Due, R., Roberts, R.G., Maeda, T., Wasisto, S., Djubiantono, T., 2005. Further evidence for small-bodied hominins from the Late Pleistocene of Flores, Indonesia. Nature 437, 1012-1017] reviewed this assessment in light of new material from the site and concluded that H. floresiensis is not likely to be descended from H. erectus, with the genealogy of the species remaining uncertain. Other interpretations, namely that LB1 is a pygmy or afflicted with microcephaly, have also been put forward. We explore the affinities of LB1 using cranial and postcranial metric and non-metric analyses. LB1 is compared to early Homo, two microcephalic humans, a 'pygmoid' excavated from another cave on Flores, H. sapiens (including African pygmies and Andaman Islanders), Australopithecus, and Paranthropus. Based on these comparisons, we conclude that it is unlikely that LB1 is a microcephalic human, and it cannot be attributed to any known species. Its attribution to a new species, Homo floresiensis, is supported.  相似文献   

8.
A reanalysis of locomotor data from functional, energetic, mechanical and ecological perspectives reveals that limb posture has major effects on limb biomechanics, energy-saving mechanisms and the costs of locomotion. Regressions of data coded by posture (crouched vs. erect) reveal nonlinear patterns in metabolic cost, limb muscle mass, effective mechanical advantage, and stride characteristics. In small crouched animals energy savings from spring and pendular mechanisms are inconsequential and thus the metabolic cost of locomotion is driven by muscle activation costs. Stride frequency appears to be the principal functional parameter related to the decreasing cost of locomotion in crouched animals. By contrast, the shift to erect limb postures invoked a series of correlated effects on the metabolic cost of locomotion: effective mechanical advantage increases, relative muscle masses decrease, metapodial limb segments elongate dramatically (as limbs shift from digitigrade to unguligrade designs) and biological springs increase in size and effectiveness. Each of these factors leads to decreases in the metabolic cost of locomotion in erect forms resulting from real and increasing contributions of pendular savings and spring savings. Comparisons of the relative costs and ecological relevance of different gaits reveal that running is cheaper than walking in smaller animals up to the size of dogs but running is more expensive than walking in horses. Animals do not necessarily use their cheapest gaits for their predominant locomotor activity. Therefore, locomotor costs are driven more by ecological relevance than by the need to optimize locomotor economy.  相似文献   

9.
Homo erectus is notable for its taller stature and longer lower limbs relative to earlier hominids, but the selective pressures favoring such long limbs are unclear. Among anthropoid primates, patas monkeys (Erythrocebus patas) and extant hominids share several extreme characteristics involved with foraging and movement, including the relatively longest lower limb proportions, longest daily travel distances and largest home ranges for their body or group size, occupancy of some of the driest habitats, and very efficient thermoregulatory systems. We suggest that patas monkeys are an appropriate behavioral model with which to speculate on the selective pressures that might have operated on H. erectus to increase lower limb length. Here, in a comparison of the locomotor activities of patas monkeys and sympatric, closely related vervet monkeys (Cercopithecus aethiops), we provide evidence for the hypothesis that patas use their long stride more to increase foraging efficiency while walking than to run, either from predators or otherwise. Am J Phys Anthropol 105:199–207, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
During locomotion, mammalian limb postures are influenced by many factors including the animal's limb length and body mass. Polk (2002) compared the gait of similar-sized cercopithecine monkeys that differed limb proportions and found that longer-limbed monkeys usually adopt more extended joint postures than shorter-limbed monkeys in order to moderate their joint moments. Studies of primates as well as non-primate mammals that vary in body mass have demonstrated that larger animals use more extended limb postures than smaller animals. Such extended postures in larger animals increase the extensor muscle mechanical advantage and allow postures to be maintained with relatively less muscular effort (Polk, 2002; Biewener 1989). The results of these previous studies are used here to address two anthropological questions. The first concerns the postural effects of body mass and limb proportion differences between australopithecines and members of the genus Homo. That is, H. erectus and later hominins all have larger body mass and longer legs than australopithecines, and these anatomical differences suggest that Homo probably used more extended postures and probably required relatively less muscular force to resist gravity than the smaller and shorter-limbed australopithecines. The second question investigates how animals with similar size but different limb proportions differ in locomotor performance. The effects of limb proportions on gait are relevant to inferring postural and locomotor differences between Neanderthals and modern Homo sapiens which differ in their crural indices and relative limb length. This study demonstrates that primates with relatively long limbs achieve higher walking speeds while using lower stride frequencies and lower angular excursions than shorter-limbed monkeys, and these kinematic differences may allow longer-limbed taxa to locomote more efficiently than shorter-limbed species of similar mass. Such differences may also have characterized the gait of Homo sapiens in comparison to Neanderthals, but more experimental data on humans that vary in limb proportions are necessary in order to evaluate this question more thoroughly.  相似文献   

11.
A wide range of selective pressures have been advanced as possible causes for the adoption of bipedalism in the hominin lineage. One suggestion has been that because modern human walking is relatively efficient compared to that of a typical quadruped, the ancestral quadruped may have reaped an energetic advantage when it walked on two legs. While it has become clear that human walking is relatively efficient and human running inefficient compared to "generalized endotherms", workers differ in their opinion of how the cost of human bipedal locomotion compares to that of a generalized primate walking quadrupedally. One view is that human walking is particularly efficient in comparison to other primates. The present study addresses this by comparing the cost of human walking and running to that of the eight primate species for which data are available and by comparing cost in primates to that of a "generalized endotherm". There is no evidence that primate locomotion is more costly than that of a generalized endotherm, although more data on adult Old World monkeys and apes would be useful. Further, human locomotion does not appear to be particularly efficient relative to that of other primates.  相似文献   

12.
Different reproductive strategies of males and females may lead to the evolution of differences in their energetic costs of reproduction, overall energetic requirements and physiological performances. Sexual dimorphism is often associated with costly behaviours (e.g. large males might have a competitive advantage in fighting, which is energetically expensive). However, few studies of mammals have directly compared the energy costs of reproductive activities between sexes. We compared the daily energy expenditure (DEE) and resting metabolic rate (RMR) of males and females of two species of mole-rat, Bathyergus janetta and Georychus capensis (the former is sexually dimorphic in body size and the latter is not) during a period of intense digging when males seek females. We hypothesized that large body size might be indicative of greater digging or fighting capabilities, and hence greater mass-independent DEE values in males of the sexually dimorphic species. In contrast to this prediction, although absolute values of DEE were greater in B. janetta males, mass-independent values were not. No differences were apparent between sexes in G. capensis. By comparison, although RMR values were greater in B. janetta than G. capensis, no differences were apparent between the sexes for either species. The energy cost of dimorphism is most likely to be the cost of maintenance of a large body size, and not the cost of behaviours performed when an individual is large.  相似文献   

13.
This article is the third of a series that explores hominin dental crown morphology by means of geometric morphometrics. After the analysis of the lower second premolar and the upper first molar crown shapes, we apply the same technique to lower first premolar morphology. Our results show a clear distinction between the morphology seen in earlier hominin taxa such as Australopithecus and African early Homo, as well as Asian H. erectus, and more recent groups such as European H. heidelbergensis, H. neanderthalensis, and H. sapiens. The morphology of the earlier hominins includes an asymmetrical outline, a conspicuous talonid, and an occlusal polygon that tends to be large. The morphology of the recent hominins includes a symmetrical outline and a reduced or absent talonid. Within this later group, premolars belonging to H. heidelbergensis and H. neanderthalensis tend to possess a small and mesiolingually-displaced occlusal polygon, whereas H. sapiens specimens usually present expanded and centered occlusal polygons in an almost circular outline. The morphological differences among Paranthropus, Australopithecus, and African early Homo as studied here are small and evolutionarily less significant compared to the differences between the earlier and later homin taxa. In contrast to the lower second premolar and the upper first molar crown, the inclusion of a larger hominin sample of lower first premolars reveals a large allometric component.  相似文献   

14.
In animal walking, the gravitational potential and kinetic energy of the center of mass (COM) fluctuates out-of-phase to reduce the energetic cost of locomotion via an inverted pendulum mechanism, and, in canine quadrupedal walking, up to 70% of the mechanical energy can be recovered. However, the rate of energy recovery for quadrupedal walking in primates has been reported to be comparatively lower. The present study analyzed fluctuations in the potential and kinetic energy of the COM during quadrupedal walking in the Japanese macaque to clarify the mechanisms underlying this inefficient utilization of the inverted pendulum mechanism in primates. Monkeys walked on a wooden walkway at a self-selected speed, and ground reaction forces were measured, using a force platform, to calculate patterns of mechanical energy fluctuation and rates of energy recovery. Our results demonstrated that rates of energy recovery for quadrupedal walking in Japanese macaques were approximately 30–50%, much smaller than those reported for dogs. Comparisons of the patterns of mechanical energy fluctuation suggested that the potential and kinetic energies oscillated relatively more in-phase, and amplitudes did not attain near equality during quadrupedal walking in Japanese macaques, possibly because of greater weight support (reaction force) of the hindlimbs and more protracted forelimbs at touchdown in the Japanese macaque, two of the three commonly accepted locomotor characteristics distinguishing primates from non-primate mammals.  相似文献   

15.
The effects of diets differing in energy and water content on the energy turnover rates and water flux of four Gerbillurus species have been examined in the laboratory. Gerbillurus tytonis. a dune species, had higher than predicted daily energy expenditure (DEE) and high water turnover rates (WTR) for a small desert mammal. The large Gerbillurus setzeri , which occurs on gravel plains, has slightly lower than predicted DEE and lower WTR than the other gerbil species studied. The Gerbillurus species examined have DEE and WTR that are affected by the protein content and potential water yield of food eaten. The importance of diet selection for water and energy budgets are discussed as adaptive strategies employed for survival and reproduction within the southern African arid zone.  相似文献   

16.
One trait that distinguishes the walking gaits of most primates from those of most mammalian nonprimates is the distribution of weight between the forelimbs and hindlimbs. Nonprimate mammals generally experience higher vertical peak substrate reaction forces on the forelimb than on the hindlimb. Primates, in contrast, generally experience higher vertical peak substrate reaction forces on the hindlimb than on the forelimb. It is currently unclear whether this unusual pattern of force distribution characterizes other primate gaits as well. The available kinetic data for galloping primates are limited and present an ambiguous picture about peak-force distribution among the limbs. The present study investigates whether the pattern of forelimb-to-hindlimb force distribution seen during walking in primates is also displayed during galloping. Six species of primates were video-recorded during walking and galloping across a runway or horizontal pole instrumented with a force-plate. The results show that while the force differences between forelimb and hindlimb are not significantly different from zero during galloping, the pattern of force distribution is generally the same during walking and galloping for most primate species. These patterns and statistical results are similar to data collected during walking on the ground. The pattern of limb differentiation exhibited by primates during walking and galloping stands in contrast to the pattern seen in most nonprimate mammals, in which forelimb forces are significantly higher. The data reported here and by Demes et al. ([1994] J. Hum. Evol. 26:353-374) suggest that a relative reduction of forelimb vertical peak forces is part of an overall difference in locomotor mechanics between most primates and most nonprimate mammals during both walking and galloping.  相似文献   

17.
The growth/survival trade-off is a fundamental aspect of life-history evolution that is often explained by the direct energetic requirement for growth that cannot be allocated into maintenance. However, there is currently no empirical consensus on whether fast-growing individuals have higher resting metabolic rates at thermoneutrality (RMRt) than slow growers. Moreover, the link between growth rate and daily energy expenditure (DEE) has never been tested in a wild endotherm. We assessed the energetic and survival costs of growth in juvenile eastern chipmunks (Tamias striatus) during a year of low food abundance by quantifying post-emergent growth rate (n = 88), RMRt (n = 66), DEE (n = 20), and overwinter survival. Both RMRt and DEE were significantly and positively related to growth rate. The effect size was stronger for DEE than RMRt, suggesting that the energy cost of growth in wild animals is more likely to be related to the maintenance of a higher foraging rate (included in DEE) than to tissue accretion (included in RMRt). Fast growers were significantly less likely to survive the following winter compared to slow growers. Juveniles with high or low RMRt were less likely to survive winter than juveniles with intermediate RMRt. In contrast, DEE was unrelated to survival. In addition, botfly parasitism simultaneously decreased growth rate and survival, suggesting that the energetic budget of juveniles was restricted by the simultaneous costs of growth and parasitism. Although the biology of the species (seed-storing hibernator) and the context of our study (constraining environmental conditions) were ideally combined to reveal a direct relationship between current use of energy and future availability, it remains unclear whether the energetic cost of growth was directly responsible for reduced survival.  相似文献   

18.
19.
Previous studies have differed in expectations about whether long limbs should increase or decrease the energetic cost of locomotion. It has recently been shown that relatively longer lower limbs (relative to body mass) reduce the energetic cost of human walking. Here we report on whether a relationship exists between limb length and cost of human running. Subjects whose measured lower-limb lengths were relatively long or short for their mass (as judged by deviations from predicted values based on a regression of lower-limb length on body mass) were selected. Eighteen human subjects rested in a seated position and ran on a treadmill at 2.68 ms(-1) while their expired gases were collected and analyzed; stride length was determined from videotapes. We found significant negative relationships between relative lower-limb length and two measures of cost. The partial correlation between net cost of transport and lower-limb length controlling for body mass was r=-0.69 (p=0.002). The partial correlation between the gross cost of locomotion at 2.68 ms(-1) and lower-limb length controlling for body mass was r=-0.61 (p=0.009). Thus, subjects with relatively longer lower limbs tend to have lower locomotor costs than those with relatively shorter lower limbs, similar to the results found for human walking. Contrary to general expectation, a linear relationship between stride length and lower-limb length was not found.  相似文献   

20.
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号