首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio calculations are used to investigate the proton transfer process in bacteriorhodopsin. HN = CH2 serves as a small prototype of the Schiff base while HCOO- models its carboxylate-containing counterion and HO- the hydroxyl group of water of tyrosine, leading to the HCOO-..H+..NHCH2 and HO-..H+..NHCH2 complexes. In isolation, both complexes prefer a neutral pair configuration wherein the central proton is associated with the anion. However, the Schiff base may be protonated in the former complex, producing the HCOO-..+HNHCH2 ion pair, when there is a high degree of dielectric coupling with an external polarizable medium. Within a range of intermediate level coupling, the equilibrium position of the proton (on either the carboxylate or Schiff base) can be switched by suitable changes in the intermolecular angle. pK shift resulting from a 60 degrees reorientation are calculated to be some 5-12 pK U within the coupling range where proton transfers are possible. The energy barrier to proton transfer reinforces the ability of changes in angle and dielectric coupling to induce a proton transfer.  相似文献   

2.
Continuum electrostatic calculations were employed to investigate the titration curves of the fully oxidized state of wild type and several variants of cytochrome c oxidase from Paracoccus denitrificans (N131D, N131C, N131V, and D124N) for different values of the dielectric constant of the protein. The effects of the mutations at the entrance of the D-proton transfer pathway were found to be quite localized to their immediate surroundings. The results can be well interpreted in the light of the available biochemical and structural data and help understanding the effects of mutations on proton conductivity. The mutations of aspartic acid Asp-I-124 to a neutral residue resulted in a decreased pK(a) value of His-I-28 suggesting that the mutation of His-I-28 may have a significant influence on the coupling of electron and proton transfer in cytochrome c oxidase. We also investigated the effect of the mutations N131D, N131C, and N131V on the residue Glu-I-278 in terms of its pK(a) value and electrostatic interaction energies.  相似文献   

3.
Martí-Arbona R  Raushel FM 《Biochemistry》2006,45(48):14256-14262
N-Formimino-l-glutamate iminohydrolase (HutF) from Pseudomonas aeruginosa catalyzes the deimination of N-formimino-l-glutamate in the histidine degradation pathway. An amino acid sequence alignment between HutF and members of the amidohydrolase superfamily containing mononuclear metal centers indicated that residues Glu-235, His-269, and Asp-320 are involved in substrate binding and activation of the nucleophilic water molecule. The purified enzyme contained up to one equivalent of zinc. The metal was removed by dialysis against the metal chelator dipicolinate with the complete loss of catalytic activity. Enzymatic activity was restored by incubation of the apoprotein with Zn2+, Cd2+, Ni2+, or Cu2+. The mutation of Glu-235, His-269, or Asp-320 resulted in the diminution of catalytic activity by two to six orders of magnitude. Bell-shaped profiles were observed for kcat and kcat/Km as a function of pH. The pKa of the group that must be unprotonated for catalytic activity was consistent with the ionization of His-269. This residue is proposed to function as a general base in the abstraction of a proton from the metal-bound water molecule. In the proposed catalytic mechanism, the reaction is initiated by the abstraction of a proton from the metal-bound water molecule by the side chain imidazole of His-269 to generate a tetrahedral intermediate of the substrate. The collapse of the tetrahedral intermediate commences with the abstraction of a second proton via the side chain carboxylate of Asp-320. The C-N bond of the substrate is subsequently cleaved with proton transfer from His-269 to form ammonia and the N-formyl product. The postulated role of the invariant Glu-235 is to ion pair with the positively charged formimino group of the substrate.  相似文献   

4.
Structural, energetic, and dynamical studies of Azotobacter vinelandii ferredoxin I are presented for native and mutant forms. The protein contains two iron-sulfur clusters, one of which ([3Fe-4S]) is believed to play a central role in the electron-coupled proton transfer. Different charge sets for the [3Fe-4S] cluster in its reduced and oxidized state are calculated with broken symmetry ab initio density functional theory methods and used in molecular dynamics (MD) simulations. The validity of the ab initio calculations is assessed by comparing partially optimized structures of the [3Fe-4S] clusters with x-ray structures. Possible proton transfer pathways between the protein and the iron-sulfur cluster are examined by both MD simulations and ab initio calculations. The MD simulations identify three main-chain hydrogen atoms--HN(13), HN(14), and HN(16)--that are within H-bonding distance of the [3Fe-4S] cluster throughout the MD simulations. They could thus play a role in the proton transfer from the protein to the iron-sulfur cluster. By contrast, the HD2(15) atom of the Asp-15 is seldom close enough to the [3Fe-4S] cluster to transfer a proton. Poisson-Boltzmann calculations indicate that there is a low, but nonzero probability, that Asp-15 is protonated at pH 7; this is a requirement for it to serve as a proton donor. Ab initio calculations with a fragment model for the protein find similar behavior for the transfer of a proton from the OH of the protonated side chain and the main-chain NH of Asp-15. The existence of a stable salt bridge between Asp-15 and Lys-84 in the D15E mutant, versus its absence in the wild-type, has been suggested as the cause of the difference in the rate of proton transfer. Extensive MD simulations were done to test this idea; the results do not support the proposal. The present findings, together with the available data, serve as the basis for an alternative proposal for the mechanism of the coupled electron-proton transfer reaction in ferredoxin I.  相似文献   

5.
S M Dunn  T M Lanigan  E E Howell 《Biochemistry》1990,29(37):8569-8576
In the absence of ligands, dihydrofolate reductase from Escherichia coli exists in at least two interconvertible conformations, only one of which binds NADPH with high affinity. This equilibrium is pH dependent, involving an ionizable group of the enzyme (pK approximately 5.5), and the proportion of the NADPH-binding conformer increases from 42% at pH 5 to 65% at pH 8. The role of specific amino acids in enzyme conformation has been investigated by studying the kinetics of NADPH binding to three dihydrofolate reductase mutants: (i) a mutant in which Asp-27, a residue that is directly involved in the binding of folates and antifolates but not NADPH, has been replaced by a serine, (ii) a mutant in which Phe-137 on the exterior of the molecule and distant from the binding sites has been replaced by a serine, and (iii) a mutant in which both Asp-27 and Phe-137 have been replaced by serines. Mutation of the Asp-27 residue reduces the affinity for NADPH by approximately 7-fold. Kinetic measurements have suggested that this is due mainly to an increase in the rate of dissociation of the initial complex and a slight shift in the enzyme equilibrium to favor the nonbinding conformation. The pH dependence of the conformer equilibrium is also shifted by approximately one pH unit to higher pH (pK approximately 6.5). In addition, the pH profile suggests the involvement of a second ionizable group having a pK of about 8 since, above pH 7, the proportion of the NADPH-binding form decreases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The 270-MHz proton NMR spectra of cobrotoxin from Naja naja atra were observed in 2H2O solution. The pKa value (5.93) of His-32 is slightly lower than the pKa value (6.65) of the reference model of N-acetylhistidine methylamide, because of the electrostatic interaction with Arg-33 and Asp-31. The pKa value (5.3--5.4) of His-4 is appreciably low, because of the interaction with the positively charged guanidino group possibly of Arg-59. The hydrogen-deuterium exchange rates in 2H2O solution were measured of cobrotoxin and imidazole-bearing models. The second-order rate constants of N-acetylhistidine methylamide, N-acetylhistidine and imidazole acetic acid satisfy the Br?nsted relation. With reference to this Br?nsted relation, the imidazole ring of His-32 is confirmed to be exposed. The imidazole ring of His-4 is also exposed and the exchange rate is excessively promoted by the presence possibly of Arg-59 in the proximity. All the methyl proton resonances are assigned to amino-acid types, by conventional double-resonance method and more effectively by the spin-echo double-resonance method. Eight methyl proton resonances are identified as due to the gamma and/or delta-methyl groups of Val-46, Leu-1, Ile-50 and Ile-52 residues. The proximity of aromatic ring protons and methyl protons is elucidated by the analyses of nulcear Overhauser effect enhancements. The aromatic proton resonances of Trp-29 are affected by the ionizable groups of Asp-31, His-32 and Tyr-35. The methyl groups of Ile-50 are in the proximity to the aromatic ring of Trp-29 and the methyl groups of Ile-52 are in the proximity to Tyr-25. The highest-field methyl proton resonance is due to a threonine residue in the proximity to His-4. The appreciable temperature-dependent chemical shift of this methyl proton resonance suggests a temperature-dependent local conformational equilibrium around the His-4 residue of the first loop of the cobrotoxin molecule.  相似文献   

7.
Deng H  Callender R  Zhu J  Nguyen KT  Pei D 《Biochemistry》2002,41(33):10563-10569
Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria and the organelles of certain eukaryotes. PDF is a novel class of amide hydrolase, which utilizes an Fe2+ ion to effect the hydrolysis of an amide bond. The ferrous ion is tetrahedrally coordinated by two histidines from a conserved HEXXH motif, a cysteine, and a water molecule. In this work, the function of the conserved glutamate (Glu-133 in Escherichia coli PDF) is evaluated by difference FTIR spectroscopic analysis of a Co(II)-substituted E. coli wild-type and E133D mutant PDF. At pH <6, the wild-type enzyme exhibited a relatively sharp C=O stretch band at 1742 cm(-1), which is assigned to the COOH group of Glu-133. The pH titration study and curve fitting to the data revealed a pK(a) of 6.0 for Glu-133 (in the presence of 500 mM NaCl). For the E133D mutant, which is only approximately 10-fold less active than the wild-type enzyme, a similar pH titration study of the Asp-133 C=O stretch band at 1740 cm(-1) revealed a pK(a) of 10.1. This unusually high pK(a) for a carboxyl group is likely due to its hydrophobic environment and electrostatic repulsion from the metal-bound hydroxide. These results argue that in the active form of E133D PDF, Asp-133 is protonated and therefore acts as a general acid during the decomposition of the tetrahedral intermediate by donating a proton to the leaving amide ion perhaps through a water molecule in the cavity created by the E133D mutation. In contrast, Glu-133 is deprotonated in the active form of wild-type PDF. We propose that Glu-133 acts as a proton shuttle accepting a proton from the metal-bound water and subsequently acts as a general acid during the decomposition of the tetrahedral intermediate.  相似文献   

8.
N Luo  E Mehler  R Osman 《Biochemistry》1999,38(29):9209-9220
The structure of uracil DNA glycosylase (UDG) in complex with a nonamer duplex DNA containing a uracil has been determined only in the product state. The reactant state was constructed by reattaching uracil to the deoxyribose, and both complexes were studied by molecular dynamics simulations. Significant changes in the positions of secondary structural elements in the enzyme are induced by the hydrolysis of the glycosidic bond. The simulations show that the specificity of the uracil pocket in the enzyme is largely retained in both complexes with the exception of Asn-204, which has been identified as a residue that contributes to discrimination between uracil and cytosine. The hydrogen bond between the amide group of Asn-204 and O(4) of uracil is disrupted by fluctuations of the side chain in the reactant state and is replaced by a hydrogen bond to water molecules trapped in the interior of the protein behind the uracil binding pocket. The role of two residues implicated by mutation experiments to be important in catalysis, His-268 and Asp-145, is clarified by the simulations. In the reactant state, His-268 is found 3.45 +/- 0.34 A from the uracil, allowing a water molecule to form a bridge to O(2). The environment in the enzyme raises the pK(a) value of His-268 to 7.1, establishing a protonated residue for assisting in the hydrolysis of the glycosidic bond. In agreement with the crystallographic structure, the DNA backbone retracts after the hydrolysis to allow His-268 to approach the O(2) of uracil with a concomitant release of the bridging water molecule and a reduction in the pK(a) to 5.5, which releases the proton to the product. The side chain of Asp-145 is fully solvated in the reactant state and H-bonded through a water molecule to the 3'-phosphate of uridine. Both the proximity of Asp-145 to the negatively charged phosphate and its pK(a) of 4.4 indicate that it cannot act as a general base catalyst. We propose a mechanism in which the bridging water between Asp-145 and the 3'-phosphate accepts a proton from another water to stabilize the bridge through a hydronium ion as well as to produce the hydroxide anion required for the hydrolytic step. The mechanism is consistent with known experimental data.  相似文献   

9.
Pharaonis phoborhodopsin (ppR, or pharaonis sensory rhodopsin II, NpsRII) is a sensor for the negative phototaxis of Natronomonas (Natronobacterium) pharaonis. Arginine 72 of ppR corresponds to Arg-82 of bacteriorhodopsin, which is a highly conserved residue among microbial rhodopsins. Using various Arg-72 ppR mutants, we obtained the following results: 1). Arg-72(ppR) together possibly with Asp-193 influenced the pK(a) of the counterion of the protonated Schiff base. 2). The M-rise became approximately four times faster than the wild-type. 3). Illumination causes proton uptake and release, and the pH profiles of the sequence of these two proton movements were different between R72A mutant and the wild-type; it is inferred that Arg-72 connects the proton transfer events occurring at both the Schiff base and an extracellular proton-releasing residue (Asp-193). 4). The M-decays of Arg-72 mutants were faster ( approximately 8-27 folds at pH 8 depending on mutants) than the wild-type, implying that the guanidinium prevents the proton transfer from the extracellular space to the deprotonated Schiff base. 5), The proton-pumping activities were decreased for mutants having increased M-decay rates, but the extent of the decrease was smaller than expected. The role of Arg-72 of ppR on the photochemistry was discussed.  相似文献   

10.
Recent advances in the determination of the X-ray crystallographic structures of bacteriorhodopsin, and some of its photointermediates, reveal the nature of the linkage between the relaxation of electrostatic and steric conflicts at the retinal and events elsewhere in the protein. The transport cycle can be now understood in terms of specific and well-described displacements of hydrogen-bonded water, and main-chain and side-chain atoms, that lower the pK(a)s of the proton release group in the extracellular region and Asp-96 in the cytoplasmic region. Thus, local electrostatic conflict of the photoisomerized retinal with Asp-85 and Asp-212 causes deprotonation of the Schiff base, and results in a cascade of events culminating in proton release to the extracellular surface. Local steric conflict of the 13-methyl group with Trp-182 causes, in turn, a cascade of movements in the cytoplasmic region, and results in reprotonation of the Schiff base. Although numerous questions concerning the mechanism of each of these proton (or perhaps hydroxyl ion) transfers remain, the structural results provide a detailed molecular explanation for how the directionality of the ion transfers is determined by the configurational relaxation of the retinal.  相似文献   

11.
Utilization of proton transfer in catalysis, which is well known in the mechanisms of protein enzymes, has been described only relatively recently for RNA enzymes. In this article, we present a current understanding of proton transfer by nucleic acids. Rate enhancement and specificity conferred by general acid-base catalysis are discussed. We also present possibilities for electrostatic catalysis from general acids and bases as well as cationic base pairs. The microenvironments of a large RNA provide the possibility of histidine-like pK(a)s for proton transfer, as well as lysine- and arginine-like pK(a)s for electrostatic catalysis. Discussion on proton transfer focuses on the hepatitis delta virus (HDV) and hairpin ribozymes, with select examples drawn from the protein literature. Discussion on electrostatic catalysis also draws on these two ribozymes, and a postulate for electrostatic catalysis by a cationic base pair in the mechanism of peptidyl transfer in the ribosome is presented. We also provide a perspective on possibilities for phosphoryl transfer mechanisms involving phosphorane intermediates and unusual tautomeric forms of the bases. Lastly, a distinction is made between ground state and "transition state" pK(a)s. We favor a model in which changes in pH lead to changes in the distribution of reactive and nonreactive ionizations of the ribozyme molecules in the ground state, and therefore suggest that "pK(a) changes in the transition state" do not provide an acceptable explanation for observed pH-rate profiles.  相似文献   

12.
The proton-pumping mechanism of bacteriorhodopsin is dependent on a photolysis-induced transfer of a proton from the retinylidene Schiff base chromophore to the aspartate-85 counterion. Up until now, this transfer was ascribed to a > 7-unit decrease in the pKa of the protonated Schiff base caused by photoisomerization of the retinal. However, a comparably large increase in the pKa of the Asp-85 acceptor also plays a role, as we show here with infrared measurements. Furthermore, the shifted vibrational frequency of the Asp-85 COOH group indicates a transient drop in the effective dielectric constant around Asp-85 to approximately 2 in the M photointermediate. This dielectric decrease would cause a > 40 kJ-mol-1 increase in free energy of the anionic form of Asp-85, fully explaining the observed pK alpha increase. An analogous photolysis-induced destabilization of the Schiff base counterion could initiate anion transport in the related protein, halorhodopsin, in which aspartate-85 is replaced by Cl- and the Schiff base proton is consequently never transferred.  相似文献   

13.
The intrinsically unfolded protein α-synuclein has an N-terminal domain with seven imperfect KTKEGV sequence repeats and a C-terminal domain with a large proportion of acidic residues. We characterized pK(a) values for all 26 sites in the protein that ionize below pH 7 using 2D (1) H-(15) N HSQC and 3D C(CO)NH NMR experiments. The N-terminal domain shows systematically lowered pK(a) values, suggesting weak electrostatic interactions between acidic and basic residues in the KTKEGV repeats. By contrast, the C-terminal domain shows elevated pK(a) values due to electrostatic repulsion between like charges. The effects are smaller but persist at physiological salt concentrations. For α-synuclein in the membrane-like environment of sodium dodecylsulfate (SDS) micelles, we characterized the pK(a) of His50, a residue of particular interest since it is flanked within one turn of the α-helix structure by the Parkinson's disease-linked mutants E46K and A53T. The pK(a) of His50 is raised by 1.4 pH units in the micelle-bound state. Titrations of His50 in the micelle-bound states of the E46K and A53T mutants show that the pK(a) shift is primarily due to interactions between the histidine and the sulfate groups of SDS, with electrostatic interactions between His50 and Glu46 playing a much smaller role. Our results indicate that the pK(a) values of uncomplexed α-synuclein differ significantly from random coil model peptides even though the protein is intrinsically unfolded. Due to the long-range nature of electrostatic interactions, charged residues in the α-synuclein sequence may help nucleate the folding of the protein into an α-helical structure and confer protection from misfolding.  相似文献   

14.
The lactose permease of Escherichia coli coupled proton transfer across the bacterial inner membrane with the uptake of beta-galactosides. In the present study we have used the cysteine-less C148 mutant that was selectively labeled by fluorescein maleimide on the C148 residue, which is an active component of the substrate transporting cavity. Measurements of the protonation dynamics of the bound pH indicator in the time resolved domain allowed us to probe the binding site by a free diffusing proton. The measured signal was reconstructed by numeric integration of differential rate equations that comply with the detailed balance principle and account for all proton transfer reactions taking place in the reaction mixture. This analysis yields the rate constants and pK values of all residues participating in the fast proton transfer reaction between the bulk and the protein's surface, revealing the exposed residues that react with free protons in a diffusion controlled reaction and how they transfer protons among themselves. The magnitudes of these rate constants were finally evaluated by comparison with the rate predicted by the Debye-Smoluchowski equation. The analysis of the kinetic and pK values indicated that the protein-fluorescein adduct assumes two conformation states. One is dominant above pH 7.4, while the other exists only below 7.1. In the high pH range, the enzyme assumes a constrained configuration and the rate constant of the reaction of a free diffusing proton with the bound dye is 10 times slower than a diffusion controlled reaction. In this state, the carboxylate moiety of residue E126 is in close proximity to the dye and exchanges a proton with it at a very fast rate. Below pH 7.1, the substrate binding domain is in a relaxed configuration and freely accessed by bulk protons, and the rate of proton exchange between the dye and E126 is 100,000 times slower. The relevance of these observations to the catalytic cycle is discussed.  相似文献   

15.
The catalytic amino acid residues of the extracellular beta-D-xylosidase (beta-D-xyloside xylohydrolase, EC 3.2.1.37) from Aspergillus carbonarius was investigated by the pH dependence of reaction kinetic parameters and chemical modifications of the enzyme. The pH dependence curves gave apparent pK values of 2.7 and 6.4 for the free enzyme, while pK value of 4.0 was obtained for the enzyme-substrate complex using p-nitrophenyl beta-D-xyloside as a substrate. These results suggested that a carboxylate group and a protonated group--presumably a histidine residue--took part in the binding of the substrate but only a carboxylate group was essential in the substrate cleavage. Carbodiimide- and Woodward's reagent K-mediated chemical modifications of the enzyme also supported that a carboxylate residue, located in the active center, was fundamental in the catalysis. The pH dependence of inactivation revealed the involvement of a group with pK value of 4.4, proving that a carboxylate residue relevant for hydrolysis was modified. During modification V(max) decreased to 10% of that of the unmodified enzyme and K(m) remained unchanged, supporting that the modified carboxylate group participated in the cleavage and not in the binding of the substrate. We synthesized and tested a new, potential affinity label, N-bromoacetyl-beta-d-xylopyranosylamine for beta-D-xylosidase. The A. carbonarius beta-D-xylosidase was irreversible inactivated by N-bromoacetyl-beta-D-xylopyranosylamine. The competitive inhibitor beta-D-xylopyranosyl azide protected the enzyme from inactivation proving that the inactivation took place in the active center. Kinetic analysis indicated that one molecule of reagent was necessary for inactivation of one molecule of the enzyme.  相似文献   

16.
Adelroth P  Hosler J 《Biochemistry》2006,45(27):8308-8318
The major proton-transfer pathway into the buried active site of cytochrome c oxidase (CcO) is the D-pathway that begins with the subunit I residue Asp-132 on the inner protein surface (the cytoplasmic surface of the aa3-type CcO of Rhodobacter sphaeroides). Asp-132 is surrounded by residues from both subunits I and III. In the absence of subunit III, CcO retains activity, but the functional characteristics of the D-pathway are significantly altered such that the transfer of protons from Asp-132 into the pathway becomes the rate-limiting step. Determination of the pH-dependence of the rate constant for D-pathway proton uptake during the single-turnover of CcO indicates that the pKa of Asp-132 in the absence of subunit III is approximately 7. The removal of subunit III also allows for alternative surface proton donor/acceptors other than Asp-132. With Asp-132 altered to alanine, the rate constant for D-pathway proton uptake is very slow (5 s(-1)) in the presence of subunit III. Once subunit III is removed, the proton uptake rate constant increases 80-fold, to 400 s(-1). The pKa associated with this uptake is >10, and the initial proton donor/acceptor in D132A III (-) is proposed to be a water of the D-pathway rather than an amino acid residue. Arachidonic acid (Aa), which stimulates the activity of several D-pathway mutant CcOs, appears to become the initial proton donor/acceptor in the absence of subunit III, whether or not Asp-132 is altered. Aa shifts the pKa of the initial proton donor to 7.6 for both wild-type (WT) III (-) and D132A III (-). The results indicate that subunit III creates a barrier that helps prevent protons from donors other than Asp-132 from directly accessing the internal waters of the D-pathway, while the subunit also provides an environment that increases the rate at which Asp-132 transfers protons into the D-pathway.  相似文献   

17.
The 3' --> 5' exonuclease activity of proofreading DNA polymerases requires two divalent metal ions, metal ions A and B. Mutational studies of the 3' --> 5' exonuclease active center of the bacteriophage T4 DNA polymerase indicate that residue Asp-324, which binds metal ion A, is the single most important residue for the hydrolysis reaction. In the absence of a nonenzymatic source of hydroxide ions, an alanine substitution for residue Asp-324 reduced exonuclease activity 10-100-fold more than alanine substitutions for the other metal-binding residues, Asp-112 and Asp-219. Thus, exonuclease activity is reduced 10(5)-fold for the D324A-DNA polymerase compared with the wild-type enzyme, while decreases of 10(3)- to 10(4)-fold are detected for the D219A- and D112A/E114A-DNA polymerases, respectively. Our results are consistent with the proposal that a water molecule, coordinated by metal ion A, forms a metal-hydroxide ion that is oriented to attack the phosphodiester bond at the site of cleavage. Residues Glu-114 and Lys-299 may assist the reaction by lowering the pK(a) of the metal ion-A coordinated water molecule, whereas residue Tyr-320 may help to reorient the DNA from the binding conformation to the catalytically active conformation.  相似文献   

18.
According to current estimates, the photosynthetic water oxidase functions with a quite restricted driving force. This emphasizes the importance of the catalytic mechanisms in this enzyme. The general problem of coupling electron and proton transfer is discussed from this viewpoint and it is argued that 'weak coupling' is preferable to 'strong coupling'. Weak coupling can be achieved by facilitating deprotonation either before (proton-first path) or after (electron-first path) the oxidation step. The proton-first path is probably relevant to the oxidation of tyrosine Y(Z) by P-680. Histidine D1-190 is believed to play a key role as a proton acceptor facilitating Y(Z) deprotonation. The pK(a) of an efficient proton acceptor is submitted to conflicting requirements, since a high pK(a) favors proton transfer from the donor, but also from the medium. H-bonding between Y(Z) and His, together with the Coulombic interaction between negative tyrosinate and positive imidazolium, are suggested to play a decisive role in alleviating these constraints. Current data and concepts on the coupling of electron and proton transfer in the water oxidase are discussed.  相似文献   

19.
M N James  A R Sielecki 《Biochemistry》1985,24(14):3701-3713
The X-ray crystal structures of native penicillopepsin and of its complex with a synthetic analogue of the inhibitor pepstatin have been refined recently at 1.8-A resolution. These highly refined structures permit a detailed examination of peptide hydrolysis in the aspartic proteinases. Complexes of penicillopepsin with substrate and catalytic intermediates were modeled, by using computer graphics, with minimal perturbation of the observed inhibitor complex. A thallium ion binding experiment shows that the position of solvent molecule O39, between Asp-33(32) and Asp-213(215) in the native structure, is favorable for cations, a fact that places constraints on possible mechanisms. A mechanism for hydrolysis is proposed in which Asp-213(215) acts as an electrophile by protonating the carbonyl oxygen of the substrate, thereby polarizing the carbon-oxygen bond, a water molecule bound to Asp-33(32) (O284 in the native structure) attacks the carbonyl carbon as the nucleophile in a general-base mechanism, the newly pyramidal peptide nitrogen is protonated, either from the solvent after nitrogen inversion or by an internal proton transfer via Asp-213(215) from a hydroxyl of the tetrahedral carbon, and the tetrahedral intermediate breaks down in a manner consistent with the stereoelectronic hypothesis. The models permit the rationalization of observed subsite preferences for substrates and may be useful in predicting subsite preferences of other aspartic proteinases.  相似文献   

20.
The roles of an aspartate and an arginine, which are completely conserved in the active sites of beta-class carbonic anhydrases, were investigated by steady-state kinetic analyses of replacement variants of the beta-class enzyme (Cab) from the archaeon Methanobacterium thermoautotrophicum. Previous kinetic analyses of wild-type Cab indicated a two-step zinc-hydroxide mechanism of catalysis in which the k(cat)/K(m) value depends only on the rate constants for the CO(2) hydration step, whereas k(cat) also depends on rate constants from the proton transfer step (K. S. Smith, N. J. Cosper, C. Stalhandske, R. A. Scott, and J. G. Ferry, J. Bacteriol. 182:6605-6613, 2000). The recently solved crystal structure of Cab shows the presence of a buffer molecule within hydrogen bonding distance of Asp-34, implying a role for this residue in the proton transport step (P. Strop, K. S. Smith, T. M. Iverson, J. G. Ferry, and D. C. Rees, J. Biol. Chem. 276:10299-10305, 2001). The k(cat)/K(m) values of Asp-34 variants were decreased relative to those of the wild type, although not to an extent which supports an essential role for this residue in the CO(2) hydration step. Parallel decreases in k(cat) and k(cat)/K(m) values for the variants precluded any conclusions regarding a role for Asp-34 in the proton transfer step; however, the k(cat) of the D34A variant was chemically rescued by replacement of 2-(N-morpholino)propanesulfonic acid buffer with imidazole at pH 7.2, supporting a role for the conserved aspartate in the proton transfer step. The crystal structure of Cab also shows Arg-36 with two hydrogen bonds to Asp-34. Arg-36 variants had both k(cat) and k(cat)/K(m) values that were decreased at least 250-fold relative to those of the wild type, establishing an essential function for this residue. Imidazole was unable to rescue the k(cat) of the R36A variant; however, partial rescue of the kinetic parameter was obtained with guanidine-HCl indicating that the guanido group of this residue is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号