首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and alpha-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the alpha-ketoglutarate-dependent dioxygenases and share the specific motif HXDX(24)TX(131)HX(10)R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 microM for (R)-mecoprop, 164 microM for (R)-dichlorprop, and 3 microM for alpha-ketoglutarate for RdpA and 132 microM for (S)-mecoprop, 495 microM for (S)-dichlorprop, and 20 microM for alpha-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 microM for SdpA and >230 microM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace alpha-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAalpha-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.  相似文献   

2.
α-Ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and α-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the α-ketoglutarate-dependent dioxygenases and share the specific motif HXDX24TX131HX10R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 μM for (R)-mecoprop, 164 μM for (R)-dichlorprop, and 3 μM for α-ketoglutarate for RdpA and 132 μM for (S)-mecoprop, 495 μM for (S)-dichlorprop, and 20 μM for α-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 μM for SdpA and >230 μM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace α-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAα-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.  相似文献   

3.
C Zipper  K Nickel  W Angst    H P Kohler 《Applied microbiology》1996,62(12):4318-4322
Sphingomonas herbicidovorans MH (previously designated Flavobacterium sp. strain MH) was able to utilize the chiral herbicide (RS)-2-(4-chloro-2-methylphenoxy)propionic acid (mecoprop) as the sole carbon and energy source. When strain MH was offered racemic mecoprop as the growth substrate, it could degrade both the (R) and the (S) enantiomer to completion, as shown by biomass formation, substrate consumption, and stoichiometric chloride release. However, the (S) enantiomer disappeared much faster from the culture medium than the (R) enantiomer. These results suggest the involvement of specific enzymes for the degradation of each enantiomer. This view was substantiated by the fact that resting cells of strain MH grown on (S)-mecoprop were able to degrade the (S) but not the (R) enantiomer of mecoprop. Accordingly, resting cells of strain MH grown on (R)-mecoprop preferentially metabolized the (R) enantiomer. Nevertheless, such cells could transform (S)-mecoprop at low rates. Oxygen uptake rates with resting cells confirmed the above view, as oxygen consumption was strongly dependent on the growth substrate. Cells grown on (R)-mecoprop showed oxygen uptake rates more than two times higher upon incubation with the (R) than upon incubation with the (S) enantiomer and vice versa.  相似文献   

4.
Cell extracts of Sphingomonas herbicidovorans MH grown on (R)-mecoprop contained an enzyme activity that selectively converted (R)-mecoprop to 4-chloro-2-methylphenol, whereas extracts of cells grown on (S)-mecoprop contained an enzyme activity selective for the S enantiomer. Both reactions were dependent on alpha-ketoglutarate and ferrous ions. Besides 4-chloro-2-methylphenol, pyruvate and succinate were detected as products of the reactions. Labeling experiments with (18)O2 revealed that both enzyme activities catalyzed a dioxygenation reaction. One of the oxygen atoms of pyruvate and one of the oxygen atoms of succinate were derived from molecular oxygen. Analysis of cell extracts obtained from cells grown on different substrates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that growth on (R)-mecoprop and (S)-mecoprop caused the appearance of prominent protein bands at 34 and 32 kDa, respectively. Both protein bands were present when cells grew on the racemic mixture. The results demonstrate that S. herbicidovorans initiated the degradation of each enantiomer of mecoprop by a specific alpha-ketoglutarate-dependent dioxygenase. By comparing conversion rates of various phenoxy herbicides, we confirmed that the two enzyme activities were distinct from that of TfdA, which catalyzes the first step in the degradation of 2,4-dichlorophenoxyacetic acid in Ralstonia eutropha JMP134.  相似文献   

5.
Two alpha-ketoglutarate-dependent dioxygenases carrying enantiospecific activity for the etherolytic cleavage of racemic phenoxypropionate herbicides [(RS)-2-(2,4-dichlorophenoxy)propionate and (RS)-2-(4-chloro-2-methylphenoxy)propionate] from Delftia acidovorans MC1 were characterized with respect to protein and sequence data. The (S)-phenoxypropionate/alpha-ketoglutarate-dioxygenase (SdpA) appeared as a monomeric enzyme with a molecular weight of 32 kDa in the presence of SDS. N-terminal sequences revealed relationship to alpha-ketoglutarate-dependent taurine dioxygenase (TauD) and to 2,4-dichlorophenoxyacetate/alpha-ketoglutarate-dioxygenase (TfdA). The (R)-phenoxypropionate/alpha-ketoglutarate-dioxygenase (RdpA) referred to 36 kDa in the presence of SDS and to 108 kDa under native conditions. Internal sequences of fragments obtained after digestion made evident relationship to TfdA and TauD. Two-dimensional electrophoretic separation resulted in the resolution of up to 3 individual spots with almost identical molecular weights but different isoelectric points with both RdpA and SdpA. The structural differences of these isoenzyme forms are not yet clear.  相似文献   

6.
Sphingomonas herbicidovorans MH was able to completely degrade both enantiomers of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid], with preferential degradation of the (S) enantiomer over the (R) enantiomer. These results are in agreement with the recently reported enantioselective degradation of mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propanoic acid] by this bacterium (C. Zipper, K. Nickel, W. Angst, and H.-P. E. Kohler, Appl. Environ. Microbiol. 62:4318–4322, 1996). Uptake of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D (2,4-dichlorophenoxyacetic acid) was inducible. Initial uptake rates of cells grown on the respective substrate showed substrate saturation kinetics with apparent affinity constants (Kt) of 108, 93, and 117 μM and maximal velocities (Vmax) of 19, 10, and 21 nmol min−1 mg of protein−1 for (R)-dichlorprop, (S)-dichlorprop, and 2,4-D, respectively. Transport of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D was completely inhibited by various uncouplers and by nigericin but was only marginally inhibited by valinomycin and by the ATPase inhibitor N,N′-dicyclohexylcarbodiimine. Experiments on the substrate specificity of the putative transport systems revealed that (R)-dichlorprop uptake was inhibited by (R)-mecoprop but not by (S)-mecoprop, (S)-dichlorprop, or 2,4-D. On the other hand, the (S)-dichlorprop transport was inhibited by (S)-mecoprop but not by (R)-mecoprop, (R)-dichlorprop, or 2,4-D. These results provide evidence that the first step in the degradation of dichlorprop, mecoprop, and 2,4-D by S. herbicidovorans is active transport and that three inducible, proton gradient-driven uptake systems exist: one for (R)-dichlorprop and (R)-mecoprop, another for (S)-dichlorprop and (S)-mecoprop, and a third for 2,4-D.  相似文献   

7.
Two novel genes, rdpA and sdpA, encoding the enantiospecific alpha-ketoglutarate dependent dioxygenases catalyzing R,S-dichlorprop cleavage in Delftia acidovorans MC1 were identified. Significant similarities to other known genes were not detected, but their deduced amino acid sequences were similar to those of other alpha-ketoglutarate dioxygenases. RdpA showed 35% identity with TauD of Pseudomonas aeruginosa, and SdpA showed 37% identity with TfdA of Ralstonia eutropha JMP134. The functionally important amino acid sequence motif HX(D/E)X(23-26)(T/S)X(114-183)HX(10-13)R/K, which is highly conserved in group II alpha-ketoglutarate-dependent dioxygenases, was present in both dichlorprop-cleaving enzymes. Transposon mutagenesis of rdpA inactivated R-dichlorprop cleavage, indicating that it was a single-copy gene. Both rdpA and sdpA were located on the plasmid pMC1 that also carries the lower pathway genes. Sequencing of a 25.8-kb fragment showed that the dioxygenase genes were separated by a 13.6-kb region mainly comprising a Tn501-like transposon. Furthermore, two copies of a sequence similar to IS91-like elements were identified. Hybridization studies comparing the wild-type plasmid and that of the mutant unable to cleave dichlorprop showed that rdpA and sdpA were deleted, whereas the lower pathway genes were unaffected, and that deletion may be caused by genetic rearrangements of the IS91-like elements. Two other dichlorprop-degrading bacterial strains, Rhodoferax sp. strain P230 and Sphingobium herbicidovorans MH, were shown to carry rdpA genes of high similarity to rdpA from strain MC1, but sdpA was not detected. This suggested that rdpA gene products are involved in the degradation of R-dichlorprop in these strains.  相似文献   

8.
Two α-ketoglutarate-dependent dioxygenases carrying enantiospecific activity for the etherolytic cleavage of racemic phenoxypropionate herbicides [(RS)-2-(2,4-dichlorophenoxy)propionate and (RS)-2-(4-chloro-2-methylphenoxy)propionate] from Delftia acidovorans MC1 were characterized with respect to protein and sequence data. The (S)-phenoxypropionate/α-ketoglutarate-dioxygenase (SdpA) appeared as a monomeric enzyme with a molecular weight of 32 kDa in the presence of SDS. N-terminal sequences revealed relationship to α-ketoglutarate-dependent taurine dioxygenase (TauD) and to 2,4-dichlorophenoxyacetate/α-ketoglutarate-dioxygenase (TfdA). The (R)-phenoxypropionate/α-ketoglutarate-dioxygenase (RdpA) referred to 36 kDa in the presence of SDS and to 108 kDa under native conditions. Internal sequences of fragments obtained after digestion made evident relationship to TfdA and TauD. Two-dimensional electrophoretic separation resulted in the resolution of up to 3 individual spots with almost identical molecular weights but different isoelectric points with both RdpA and SdpA. The structural differences of these isoenzyme forms are not yet clear.  相似文献   

9.
AIMS: An agar medium containing a range of related chlorophenoxyalkanoic acid herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), racemic mecoprop, (R)-mecoprop and racemic 2,4-DP (2-(2,4-dichlorophenoxy) propionic acid) was developed to assess the catabolic activity of a range of degradative strains. METHODS AND RESULTS: The medium was previously developed containing 2,4-D as a carbon source to visualise degradation by the production of dark violet bacterial colonies. Strains isolated on mecoprop were able to degrade 2,4-D, MCPA, racemic mecoprop, (R)-mecoprop and racemic 2,4-DP, whereas the 2,4-D-enriched strains were limited to 2,4-D and MCPA as carbon sources. Sphingomonas sp. TFD44 solely degraded the dichlorinated compounds, 2,4-D, racemic 2,4-DP and 2,4-DB (2,4-dichlorophenoxybutyric acid). However, Sphingomonas sp. AW5, originally isolated on 2,4,5-T, was the only strain to degrade the phenoxybutyric compound MCPB (4-chloro-2-methylphenoxybutyric acid). CONCLUSION: This medium has proved to be a very effective and rapid method for screening herbicide degradation by bacterial strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This method reduces the problem of assessing the biodegradability of this family of compounds to an achievable level.  相似文献   

10.
The herbicide mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid] is widely applied to corn fields in order to control broad-leaved weeds. However, it is often detected in groundwater where it can be a persistent contaminant. Two mecoprop-degrading bacterial strains were isolated from agricultural soils through their capability to degrade ( R/S )-mecoprop rapidly. 16S rDNA sequencing of the isolates demonstrated that one was closely related to the genera Alcaligenes sp. (designated CS1) and the other to Ralstonia sp. (designated CS2). Additionally, these isolates demonstrated ability to grow on other related herbicides, including 2,4- D (2,4-dichlorophenoxyacetic acid), MCPA [4-chloro-2-methyl phenoxy acetic acid] and ( R/S )-2,4-DP [2-(2,4-dichlorophenoxy)propionic acid] as sole carbon sources. tfdABC gene-specific probes derived from the 2,4- D -degrading Variovorax paradoxus TV1 were used in hybridization analyses to establish whether tfd -like genes are present in mecoprop-degrading bacteria. Hybridization analysis demonstrated that both Alcaligenes sp. CS1 and Ralstonia sp. CS2 harboured tfdA , tfdB and tfdC genes on plasmids that have approximately > 60% sequence similarity to the tfdA , tfdB and tfdC genes of V. paradoxus . It is therefore likely that tfd -like genes may be involved in the degradation of mecoprop, and we are currently investigating this further.  相似文献   

11.
Twelve mecoprop-degrading bacteria were isolated from soil samples, and their genetic and phenotypic characteristics were investigated. Analysis of 16S rDNA sequences indicated that the isolates were related to members of the genus Sphingomonas. Ten different chromosomal DNA patterns were obtained by polymerase-chain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences from the 12 isolates. The isolates were found to be able to utilize the chiral herbicide mecoprop as a sole source of carbon and energy. While seven of the isolates were able to degrade both (R)- and (S)-mecoprop, four isolates exhibited enantioselective degradation of the (S)-type and one isolate could degrade only the (R)-enantiomer. All of the isolates were observed to possess plasmid DNAs. When certain plasmids were removed from isolates MP11, MP15, and MP23, those strains could no longer degrade mecoprop. This compelling result suggests that plasmid DNAs, in this case, conferred the ability to degrade the herbicide. The isolates MP13, MP15, and MP24 were identified as the same strain; however, they exhibited different plasmid profiles. This indicates that these isolates acquired different mecoprop-degradative plasmids in different soils through natural gene transfer.  相似文献   

12.
Although X-ray crystallographic and NMR studies have been made on the adenylate kinases, the substrate-binding sites are not unequivocally established. In an attempt to shed light on the binding sites for MgATP2- and for AMP2- in human cytosolic adenylate kinase (EC 2.7.4.3, hAK1), we have investigated the enzymic effects of replacement of the arginine residues (R44, R132, R138, and R149), which had been assumed by Pai et al. [Pai, E. F., Sachsenheimer, W., Schirmer, R. H., & Schulz, G. E. (1977) J. Mol. Biol. 114, 37-45] to interact with the phosphoryl groups of AMP2- and MgATP2-. With use of the site-directed mutagenesis method, point mutations were made in the artificial gene for hAK1 [Kim, H. J., Nishikawa, S., Tanaka, T., Uesugi, S., Takenaka, H., Hamada, M., & Kuby, S. A. (1989) Protein Eng. 2, 379-386] to replace these arginine residues with alanyl residues and yield the mutants R44A hAK1, R132A hAK1, R138A hAK1, and R149A hAK1. The resulting large increases in the Km,app values for AMP2- of the mutant enzymes, the relatively small increases in the Km,app values for MgATP2-, and the fact that the R132A, R138A, and R149A mutant enzymes proved to be very poor catalysts are consistent with the idea that the assigned substrate binding sites of Pai et al. (1977) have been reversed and that their ATP-binding site may be assigned as the AMP site.  相似文献   

13.
( R)- and ( S)-oxirane-2-carboxylate were determined to be active site-directed irreversible inhibitors of the cis-3-chloroacrylic acid dehalogenase ( cis-CaaD) homologue Cg10062 found in Corynebacterium glutamicum. Kinetic analysis indicates that the ( R) enantiomer binds more tightly and is the more potent inhibitor, likely reflecting more favorable interactions with active site residues. Pro-1 is the sole site of covalent modification by the ( R) and ( S) enantiomers. Pro-1, Arg-70, Arg-73, and Glu-114, previously identified as catalytic residues in Cg10062, have also been implicated in the inactivation mechanism. Pro-1, Arg-70, and Arg-73 are essential residues for the process as indicated by the observation that the enzymes with the corresponding alanine mutations are not covalently modified by either enantiomer. The E114Q mutant slows covalent modification of Cg10062 but does not prevent it. The results are comparable to those found for the irreversible inactivation of cis-CaaD by ( R)-oxirane-2-carboxylate with two important distinctions: the alkylation of cis-CaaD is stereospecific, and Glu-114 does not take part in the cis-CaaD inactivation mechanism. Cg10062 exhibits low-level cis-CaaD and trans-3-chloroacrylic acid dehalogenase (CaaD) activities, with the cis-CaaD activity predominating. Hence, the preference of Cg10062 for the cis isomer correlates with the observation that the ( R) enantiomer is the more potent inactivator. Moreover, the factors responsible for the relaxed substrate specificity of Cg10062 may account for the stereoselective inactivation by the enantiomeric epoxides. Delineation of these factors would provide a more complete picture of the substrate specificity determinants for cis-CaaD. This study represents an important step toward this goal by setting the stage for a crystallographic analysis of inactivated Cg10062.  相似文献   

14.
Sphingomonas paucimobilis B90A contains two variants, LinA1 and LinA2, of a dehydrochlorinase that catalyzes the first and second steps in the metabolism of hexachlorocyclohexanes (R. Kumari, S. Subudhi, M. Suar, G. Dhingra, V. Raina, C. Dogra, S. Lal, J. R. van der Meer, C. Holliger, and R. Lal, Appl. Environ. Microbiol. 68:6021-6028, 2002). On the amino acid level, LinA1 and LinA2 were 88% identical to each other, and LinA2 was 100% identical to LinA of S. paucimobilis UT26. Incubation of chiral alpha-hexachlorocyclohexane (alpha-HCH) with Escherichia coli BL21 expressing functional LinA1 and LinA2 S-glutathione transferase fusion proteins showed that LinA1 preferentially converted the (+) enantiomer, whereas LinA2 preferred the (-) enantiomer. Concurrent formation and subsequent dissipation of beta-pentachlorocyclohexene enantiomers was also observed in these experiments, indicating that there was enantioselective formation and/or dissipation of these enantiomers. LinA1 preferentially formed (3S,4S,5R,6R)-1,3,4,5,6-pentachlorocyclohexene, and LinA2 preferentially formed (3R,4R,5S,6S)-1,3,4,5,6-pentachlorocyclohexene. Because enantioselectivity was not observed in incubations with whole cells of S. paucimobilis B90A, we concluded that LinA1 and LinA2 are equally active in this organism. The enantioselective transformation of chiral alpha-HCH by LinA1 and LinA2 provides the first evidence of the molecular basis for the changed enantiomer composition of alpha-HCH in many natural environments. Enantioselective degradation may be one of the key processes determining enantiomer composition, especially when strains that contain only one of the linA genes, such as S. paucimobilis UT26, prevail.  相似文献   

15.
Glutamate dehydrogenase (GDH) was purified to homogeneity from the liver of euthermic (37 degrees C body temperature) and hibernating (torpid, 5 degrees C body temperature) Richardson's ground squirrels (Spermophilus richardsonii). SDS-PAGE yielded a subunit molecular weight of 59.5+/-2 kDa for both enzymes, but reverse phase and size exclusion HPLC showed native molecular weights of 335+/-5 kDa for euthermic and 320+/-5 kDa for hibernator GDH. Euthermic and hibernator GDH differed substantially in apparent Km values for glutamate, NH4+, and alpha-ketoglutarate, as well as in Ka and IC50 values for nucleotide and ion activators and inhibitors. Kinetic properties of each enzyme were differentially affected by assay temperature (37 versus 5 degrees C). For example, the Km for alpha-ketoglutarate of euthermic GDH was higher at 5 degrees C (3.66+/-0.34 mM) than at 37 degrees C (0.10+/-0.01 mM), whereas hibernator GDH had a higher affinity for alpha-ketoglutarate at 5 degrees C (Km was 0.98+/-0.08 mM at 37 degrees C and 0.43+/-0.02 mM at 5 degrees C). Temperature effects on Ka ADP values of the enzymes followed a similar pattern; GTP inhibition was strongest with the euthermic enzyme at 37 degrees C and weakest with hibernator GDH at 5 degrees C. Entry into hibernation leads to stable changes in the properties of ground squirrel liver GDH that allow the enzyme to function optimally at the prevailing body temperature.  相似文献   

16.
The naphthalene dioxygenase (NDO) system catalyzes the first step in the degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The enzyme has a broad substrate range and catalyzes several types of reactions including cis-dihydroxylation, monooxygenation, and desaturation. Substitution of valine or leucine at Phe-352 near the active site iron in the alpha subunit of NDO altered the stereochemistry of naphthalene cis-dihydrodiol formed from naphthalene and also changed the region of oxidation of biphenyl and phenanthrene. In this study, we replaced Phe-352 with glycine, alanine, isoleucine, threonine, tryptophan, and tyrosine and determined the activity with naphthalene, biphenyl, and phenanthrene as substrates. NDO variants F352W and F352Y were marginally active with all substrates tested. F352G and F352A had reduced but significant activity, and F352I, F352T, F352V, and F352L had nearly wild-type activities with respect to naphthalene oxidation. All active enzymes had altered regioselectivity with biphenyl and phenanthrene. In addition, the F352V and F352T variants formed the opposite enantiomer of biphenyl cis-3,4-dihydrodiol [77 and 60% (-)-(3S,4R), respectively] to that formed by wild-type NDO [>98% (+)-(3R,4S)]. The F352V mutant enzyme also formed the opposite enantiomer of phenanthrene cis-1,2-dihydrodiol from phenanthrene to that formed by biphenyl dioxygenase from Sphingomonas yanoikuyae B8/36. A recombinant Escherichia coli strain expressing the F352V variant of NDO and the enantioselective toluene cis-dihydrodiol dehydrogenase from Pseudomonas putida F1 was used to produce enantiomerically pure (-)-biphenyl cis-(3S,4R)-dihydrodiol and (-)-phenanthrene cis-(1S,2R)-dihydrodiol from biphenyl and phenanthrene, respectively.  相似文献   

17.
By site-directed mutagenesis, TEM-1 beta-lactamase was altered to contain single amino acid changes of E104K, R164S, and E240K, in addition to double changes of E104K/R164S or R164S/E240K and the triple change of E104K/R164S/E240K. Hydrolysis rates for cephaloridine and benzylpenicillin were lowered at least 1 order of magnitude for all enzymes containing R164S substitutions. All mutant enzymes exhibited increased kcat values for beta-lactam antibiotics containing an aminothiazole oxime side chain. Hydrolysis of ceftazidime was most affected, with kcat values increased 3-4 orders of magnitude in all enzymes with the substituted R164S moiety. Km values decreased for all substrates except ceftazidime in the enzymes with multiple mutations. Aztreonam was most affected, with Km values lowered 23-56-fold in the enzymes bearing multiple mutations. When the crystal structures of aztreonam and related monobactams were studied and projected into an active-site model of the PC1 beta-lactamase, it became apparent that the two lysine residues might serve equivalent roles by interacting with the carboxylate of the aminothiazole oxime side chain. Hydrogen-bonding interactions involving the oxime and N7 of the lysine, particularly Lys-104, may also be important in some antibiotics. Ser-164 apparently serves an indirect role, since it is somewhat distant from the active-site cleft.  相似文献   

18.
The rdpA gene of strains Delftia acidovorans MC1, Rhodoferax sp. P230, and Sphingobium herbicidovorans MH proved to be identical. However, when RdpA [(R)‐2‐(2,4‐dichlorophenoxy)propionate/α‐ketoglutarate dioxygenase] was investigated after purification from the various strains, significant differences in the kinetics and some chemical properties of the enzymes were observed. The preference for substrates ranged in the order (R)‐2‐(2,4‐dichlorophenoxy)propionate (2,4‐DP) > (R)‐2‐(4‐chloro‐2‐methylphenoxy)propionate (MCPP) >> 2,4‐dichlorophenoxyacetate (2,4‐D) ~ 4‐chloro‐2‐methylphenoxyacetate (MCPA), but detailed kinetic investigations revealed significant strain‐dependent differences in the kcat and KM values. While the KM values of RdpA from the various strains were low and their range rather narrow with 2,4‐DP (19–60 μM) and MCPP (35–64 μM), larger differences were observed with phenoxyacetates which were distinctly higher and spanned a wider range with 2,4‐D (237–935 μM) and MCPA (164–510 μM). The lowest KM values with 2,4‐D and MCPA were found for RdpA originating from strain P230. Investigation of the enzymes from the various sources by 2D gel electrophoresis revealed up to three monomeric enzyme forms which differed in the pI value. The 2D‐patterns were similar with RdpA from strains MC1 and MH, and after heterologous expression of the enzyme in Escherichia coli, but differed significantly from that of strain P230. The presence of enzyme forms and their different composition coincided apparently with the differences observed in the kinetic properties of RdpA in the various strains. The effects are discussed in terms of posttranslational modification of RdpA which appears to be different in extent and kind in the various strains.  相似文献   

19.
The specificity of horse liver alcohol dehydrogenase for cyclohexanol and its 3-methyl derivatives was investigated by stopped-flow and initial velocity kinetic studies. The (1S,3S)-3-methylcyclohexanol was 7 times more reactive (V/Km) than cyclohexanol, whereas the (1R,3R)-3-methylcyclohexanol was at least 1000 times less reactive than its enantiomer. Computer simulation of the transient reaction of NAD+ and the cyclohexanols catalyzed by the enzyme suggests that the rate of transfer of hydrogen from the alcohol to NAD+ is increased with the 1S,3S isomer. Modeling of the three-dimensional structure of the ternary complex of the enzyme suggests that the 1S,3S isomer should only bind in a productive, reactive mode, whereas the 1R,3R isomer would bind predominantly in a nonproductive, inhibitory mode.  相似文献   

20.
Enantiomers of 4-(1,1,2-trimethylhexyl)phenol, a chiral isomer of the endocrine disrupting chemical nonylphenol, have been resolved and isolated by preparative chiral HPLC. The absolute configurations of the enantiomers were then determined by an X-ray crystallographic study of the (-)-camphanoyl derivative of the first eluted enantiomer NP(35)E1. The first enantiomer (NP(35)E1) and the second enantiomer (NP(35)E2) eluted were found to have the S and R absolute configurations, respectively. The estrogenic potencies of the S and R enantiomers were tested by the E-screen assay. A slight difference was observed in the relative proliferative effect between the S enantiomer and R enantiomer in the E-screen assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号