首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence suggests that protein kinase C (PKC) and intracellular calcium are important for amphetamine-stimulated outward transport of dopamine in rat striatum. In this study, we examined the effect of select PKC isoforms on amphetamine-stimulated dopamine efflux, focusing on Ca(2+)-dependent forms of PKC. Efflux of endogenous dopamine was measured in superfused rat striatal slices; dopamine was measured by high performance liquid chromatography. The non-selective classical PKC inhibitor G?6976 inhibited amphetamine-stimulated dopamine efflux, whereas rottlerin, a specific inhibitor of PKC delta, had no effect. A highly specific PKC beta inhibitor, LY379196, blocked dopamine efflux that was stimulated by either amphetamine or the PKC activator, 12-O-tetradecanoylphorbol-13-acetate. None of the PKC inhibitors significantly altered [3H]dopamine uptake. PKC beta(I) and PKC beta(II), but not PKC alpha or PKC gamma, were co-immunoprecipitated from rat striatal membranes with the dopamine transporter (DAT). Conversely, antisera to PKC beta(I) and PKC beta(II) but not PKC alpha or PKCg amma were able to co-immunoprecipitate DAT. Amphetamine-stimulated dopamine efflux was significantly enhanced in hDAT-HEK 293 cells transfected with PKC beta(II) as compared with hDAT-HEK 293 cells alone, or hDAT-HEK 293 cells transfected with PKCa lpha or PKC beta(I). These results suggest that classical PKC beta(II) is physically associated with DAT and is important in maintaining the amphetamine-stimulated outward transport of dopamine in rat striatum.  相似文献   

2.
K Kubo  S Ohno  K Suzuki 《FEBS letters》1987,223(1):138-142
Two types of cDNA clones encoding human protein kinase C (PKC) were isolated from a spleen cDNA library using rabbit protein kinase C beta I/beta II cDNA as a hybridization probe. Nucleotide sequence analyses of these cDNA inserts revealed complete primary structures of two distinct types of human protein kinase C beta I and beta II which differ only in their C-terminal 50 or 52 amino acid residues. It was concluded that there exist four distinct types of PKC, PKC alpha, beta I, beta II and gamma, in human as well as rabbit, and that the corresponding sequences are strictly conserved among mammalian species.  相似文献   

3.
蛋白激酶C亚型在HL—60细胞诱导分化中的变化   总被引:1,自引:0,他引:1  
用全反式维甲酸(ATRA)或佛波酯(PMA)处理人早幼粒白血病细胞(HL-60)3天,用形态学,NBT还原实验,特异性和非特异性酯酶测定,证明细胞分别向粒细胞或单核/巨噬细胞分化。通过免疫组化法观察了蛋白激酶C(PKC)α,βⅠ和βⅡ亚型在分化后的变化。结果显示,ATRA可引起HL-60细胞PKCα,βⅠ和βⅡ的含量升高,分别为对照的5.0,2.8和4.2倍,并存在从胞膜向胞质转位。PMA则使PC  相似文献   

4.
Studies with inhibitors have implicated protein kinase C (PKC) in the adhesive functions of integrin alpha(IIb)beta(3) in platelets, but the responsible PKC isoforms and mechanisms are unknown. Alpha(IIb)beta(3) interacts directly with tyrosine kinases c-Src and Syk. Therefore, we asked whether alpha(IIb)beta(3) might also interact with PKC. Of the several PKC isoforms expressed in platelets, only PKC beta co-immunoprecipitated with alpha(IIb)beta(3) in response to the interaction of platelets with soluble or immobilized fibrinogen. PKC beta recruitment to alpha(IIb)beta(3) was accompanied by a 9-fold increase in PKC activity in alpha(IIb)beta(3) immunoprecipitates. RACK1, an intracellular adapter for activated PKC beta, also co-immunoprecipitated with alpha(IIb)beta(3), but in this case, the interaction was constitutive. Broad spectrum PKC inhibitors blocked both PKC beta recruitment to alpha(IIb)beta(3) and the spread of platelets on fibrinogen. Similarly, mouse platelets that are genetically deficient in PKC beta spread poorly on fibrinogen, despite normal agonist-induced fibrinogen binding. In a Chinese hamster ovary cell model system, adhesion to fibrinogen caused green fluorescent protein-PKC beta I to associate with alpha(IIb)beta(3) and to co-localize with it at lamellipodial edges. These responses, as well as Chinese hamster ovary cell migration on fibrinogen, were blocked by the deletion of the beta(3) cytoplasmic tail or by co-expression of a RACK1 mutant incapable of binding to beta(3). These studies demonstrate that the interaction of alpha(IIb)beta(3) with activated PKC beta is regulated by integrin occupancy and can be mediated by RACK1 and that the interaction is required for platelet spreading triggered through alpha(IIb)beta(3). Furthermore, the studies extend the concept of alpha(IIb)beta(3) as a scaffold for multiple protein kinases that regulate the platelet actin cytoskeleton.  相似文献   

5.
Immunological homeostasis is often maintained by counteractive functions of two different cell types or two different receptors signaling through different intermediates in the same cell. One of these signaling intermediates is protein kinase C (PKC). Ten differentially regulated PKC isoforms are integral to receptor-triggered responses in different cells. So far, eight PKC isoforms are reported to be expressed in macrophages. Whether a single receptor differentially uses PKC isoforms to regulate counteractive effector functions has never been addressed. As CD40 is the only receptor characterized to trigger counteractive functions, we examined the relative role of PKC isoforms in the CD40-induced macrophage functions. We report that in BALB/c mouse macrophages, higher doses of CD40 stimulation induce optimum phosphorylation and translocation of PKCα, βI, βII, and ε whereas lower doses of CD40 stimulation activates PKCδ, ζ, and λ. Infection of macrophages with the protozoan parasite Leishmania major impairs PKCα, βI, βII, and ε isoforms but enhances PKCδ, ζ, and λ isoforms, suggesting a reciprocity among these PKC isoforms. Indeed, PKCα, βI, βII, and ε isoforms mediate CD40-induced p38MAPK phosphorylation, IL-12 expression, and Leishmania killing; PKCδ and ζ/λ mediate ERK1/2 phosphorylation, IL-10 production, and parasite growth. Treatment of the susceptible BALB/c mice with the lentivirally expressed PKCδ- or ζ-specific short hairpin RNA significantly reduces the infection and reinstates host-protective IFN-γ-dominated T cell response, defining the differential roles for PKC isoforms in immune homeostasis and novel PKC-targeted immunotherapeutic and parasite-derived immune evasion strategies.  相似文献   

6.
7.
Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes.  相似文献   

8.
To study whether protein kinase C (PKC) isoforms can interact with protein-tyrosine-phosphatases (PTPs) which are connected to the insulin signaling pathway, we co-overexpressed PKC isoforms together with insulin receptor, docking proteins, and the PTPs SHP1 and SHP2 in human embryonic kidney (HEK) 293 cells. After phorbol ester induced activation of PKC isoforms alpha, beta 1, beta 2, and eta, we could show a defined gel mobility shift of SHP2, indicating phosphorylation on serine/threonine residues. This phosphorylation was not dependent on insulin receptor or insulin receptor substrate-1 (IRS-1) overexpression and did not occur for the closely related phosphatase SHP1. Furthermore, PKC phosphorylation of SHP2 was completely blocked by the PKC inhibitor bisindolylmaleimide and was not detectable when SHP2 was co-overexpressed with kinase negative mutants of PKC beta 1 and -beta 2. The phosphorylation also occurred on endogenous SHP2 in Chinese hamster ovary (CHO) cells stably overexpressing PKC beta 2. Using point mutants of SHP2, we identified serine residues 576 and 591 as phosphorylation sites for PKC. However, no change of phosphatase activity by TPA treatment was detected in an in vitro assay. In summary, SHP2 is phosphorylated on serine residues 576 and 591 by PKC isoforms alpha, beta 1, beta 2, and eta.  相似文献   

9.
Production of superoxide anions by the multicomponent enzyme of human neutrophil NADPH oxidase is accompanied by extensive phosphorylation of p47(phox), one of its cytosolic components. p47(phox) is an excellent substrate for protein kinase C (PKC), but the respective contribution of each PKC isoform to this process is not clearly defined. In this study, we found that PKC isoforms known to be present in human neutrophils (PKC alpha, beta, delta, and zeta) phosphorylate p47(phox) in a time- and concentration-dependent manner, with apparent K(m) values of 10.33, 3.37, 2.37, and 2.13 microM for PKC alpha, beta II, delta, and zeta, respectively. Phosphopeptide mapping of p47(phox) showed that, as opposed to PKC zeta, PKC alpha, beta II, and delta are able to phosphorylate all the major PKC sites. The use of p47(phox) mutants identified serines 303, 304, 315, 320, 328, 359, 370, and 379 as targets of PKC alpha, beta II, and delta. Comparison of the intensity of phosphopeptides suggests that Ser 328 is the most phosphorylated serine. The ability of each PKC isoform to induce p47(phox) to associate with p22(phox) was tested by using an overlay technique; the results showed that all the PKC isoforms that were studied induce p47(phox) binding to the cytosolic fragment of p22(phox). In addition, PKC alpha, beta II, delta, and zeta were able to induce production of superoxide anions in a cell-free system using recombinant cytosolic proteins. Surprisingly, PKC zeta, which phosphorylates a subset of selective p47(phox) sites, induced stronger activation of the NADPH oxidase. Taken together, these results suggest that PKC alpha, beta II, delta, and zeta expressed in human neutrophils can individually phosphorylate p47(phox) and induce both its translocation and NADPH oxidase activation. In addition, phosphorylation of some serines could have an inhibitory effect on oxidase activation.  相似文献   

10.
The function of beta-adrenergic receptor (betaAR) is modulated by the activity status of alpha1-adrenergic receptors (alpha1ARs) via molecular crosstalk, and this becomes evident when measuring cardiac contractile responses to adrenergic stimulation. The molecular mechanism underlying this crosstalk is unknown. We have previously demonstrated that overexpression of alpha1B-adrenergic receptor (alpha1BAR) in transgenic mice leads to a marked desensitization of betaAR-mediated adenylyl cyclase stimulation which is correlated with increased levels of activated protein kinase C (PKC) beta, delta and [J. Mol. Cell. Cardiol. 30 (1998) 1827]. Therefore, we wished to determine which PKC isoforms play a role in heterologous betaAR desensitization and also which isoforms of the betaAR were the molecular target(s) for PKC. In experiments using constitutively activated PKC expression constructs transfected into HEK 293 cells also expressing the beta2AR, constitutively active (CA)-PKC overexpression was first confirmed by immunoblots using specific anti-PKC antibodies. We then demonstrated that the different PKC subtypes lead to a decreased maximal cAMP accumulation following isoproterenol stimulation with a rank order of PKCalpha > or = PKCzeta>PKC>PKCbetaII. However, a much more dramatic desensitization of adenylyl cyclase stimulation was observed in cells co-transfected with different PKC isoforms and beta1AR. Further, the modulation of beta1AR by PKC isoforms had a different rank order than for the beta2AR: PKCbetaII>PKCalpha>PKC>PKCzeta. PKC-mediated desensitization was reduced by mutating consensus cAMP-dependent protein kinase (PKA)/PKC sites in the third intracellular loop and/or the carboxy-terminal tail of either receptor. Our results demonstrate therefore that the beta1AR is the most likely molecular target for PKC-mediated heterologous desensitization in the mammalian heart and that modulation of adrenergic receptor activity in any given cell type will depend on the complement of PKC isoforms present.  相似文献   

11.
The effect of HIV-1 Tat protein on the production of IL-10, an immunosuppressive cytokine, was examined in human primary monocytes obtained from healthy HIV-1-negative blood donors. As expected and in agreement with our previous data, a dose-dependent induction of IL-10 was observed. In addition, we showed that this induction is mediated by the PKC pathway: in the presence of Ro 31-8220, an inhibitor of all PKC isozymes, or after 48 h of PMA treatment, Tat protein becomes unable to stimulate IL-10 production. Among the 11 PKC isozymes, eight (PKC alpha, beta(I), beta(II), delta, epsilon, eta, zeta, mu) are expressed in monocytes. In this study, by analyzing the translocation to the membrane after Tat stimulation, we showed that PKC alpha, beta(I), beta(II), delta and epsilon isozymes are activated by Tat. Moreover, by combining different approaches including selective PKC inhibitors (G?6983, G?6976, hispidin and rottlerin), we showed that PKC beta(II) and delta isozymes are essential for the activation of IL-10 production in human monocytes following stimulation by HIV-1 Tat protein.  相似文献   

12.
Treatment of human promyelocytic leukemia cells U937 with phorbol 12-myristate 13-acetate (TPA) induces them to differentiate into monocytic cells [Harris, P., & Ralph, P. (1985) J. Leukocyte Biol. 37, 407-422]. Here we investigated the effects of TPA on interleukin 1 gene expression and the possible role of protein kinase C (PKC) in this process. Addition of TPA to serum-starved U937 cells induced the expression of the interleukin 1 beta (IL-1 beta) gene. This effect was apparent as early as 2 h and peaked at 24 h in the presence of 5 X 10(-8) M TPA. Higher concentrations of TPA, which partially or totally depleted protein kinase C levels in the cells (10(-9)-2 X 10(-5) M), had an inhibitory effect on IL-1 beta mRNA expression. Cell-permeable 1,2-dioctanoyl-sn-glycerol (diC8), a diacylglycerol that activates PKC in intact cells and cell-free systems, did not mimic the effect of TPA on the IL-1 beta mRNA induction. To determine the protein kinase C isozymes present in the control and TPA- (5 X 10(-8) M) treated U937 cells, we prepared antipeptide antibodies that specifically recognize the alpha, beta, and gamma isoforms of protein kinase C in rat brain cytosol and U937 cell extracts. In "control" U937 cells, 30% of PKC alpha was particulate, and PKC beta was cytosolic, while there was no detectable PKC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We determined whether the beta or gamma protein kinase C (PKC) subtypes implicated in long-term potentiation (LTP) selectively regulates protein F1 phosphorylation. Purified bovine PKC subtypes and recombinant PKC subtypes activated by phosphatidylserine (PS) and calcium were tested for their relative ability to phosphorylate purified rat protein F1 (a.k.a. GAP-43). After equalizing enzyme activity against histone, the recombinant beta II PKC phosphorylated protein F1 to a 6 fold greater extent than the recombinant gamma PKC. Bovine beta I PKC phosphorylated protein F1 to a 3 fold greater extent than bovine gamma PKC. Even when PS was replaced by lipoxin B4, which can selectively increase gamma PKC activity, beta I PKC was still superior to gamma PKC in phosphorylating protein F1. Taken together with previous cellular studies of brain showing parallel levels of expression of beta PKC mRNA and protein F1 mRNA, the present results make it attractive to propose that beta PKC regulates protein F1 phosphorylation during the development of synaptic plasticity.  相似文献   

14.
In this study, we evaluated the influence of protein kinase C zeta (PKC zeta) on topoisomerase II inhibitor-induced cytotoxicity in monocytic U937 cells. In U937-zeta J and U937-zeta B cells, enforced PKC zeta expression, conferred by stable transfection of PKC zeta cDNA, resulted in total inhibition of VP-16- and mitoxantrone-induced apoptosis and decreased drug-induced cytotoxicity, compared with U937-neo control cells. In PKC zeta-overexpressing cells, drug resistance correlated with decreased VP-16-induced DNA strand breaks and DNA protein cross-links measured by alkaline elution. Kinetoplast decatenation assay revealed that PKC zeta overexpression resulted in reduced global topoisomerase II activity. Moreover, in PKC zeta-overexpressing cells, we found that PKC zeta interacted with both alpha and beta isoforms of topoisomerase II, and these two enzymes were constitutively phosphorylated. However, when human recombinant PKC zeta (rH-PKC zeta) was incubated with purified topoisomerase II isoforms, rH-PKC zeta interacted with topoisomerase II beta but not with topoisomerase II alpha. PKC zeta/topoisomerase II beta interaction resulted in phosphorylation of this enzyme and in decrease of its catalytic activity. Finally, this report shows for the first time that topoisomerase II beta is a substrate for PKC zeta, and that PKC zeta may significantly influence topoisomerase II inhibitor-induced cytotoxicity by altering topoisomerase II beta activity through its kinase function.  相似文献   

15.
16.
In mammalian epidermis, alpha6beta4 integrin is expressed exclusively on the basal layer localized to the hemidesmosomes, where it interacts extracellularly with the laminin-5 ligand. During differentiation, loss of alpha6beta4 is associated with keratinocyte detachment from the basement membrane and upward migration. The protein kinase C (PKC) family of isoforms participates in regulation of integrin function and is linked to skin differentiation. Exposure of primary murine keratinocytes to PKC activators specifically downregulates alpha6beta4 expression. Utilizing recombinant adenoviruses, we selectively overexpressed skin PKC isoforms in primary keratinocytes. PKCdelta and PKCzeta induced downregulation of alpha6beta4 protein expression, leading to reduced keratinocyte attachment to laminin-5 and enhanced gradual detachment from the underlying matrix. In contrast, PKCalpha upregulated alpha6beta4 protein expression, leading to increased keratinocyte attachment to laminin-5 and to the underlying matrix. Altogether, these results suggest distinct roles for specific PKC isoforms in alpha6beta4 functional regulation during the early stages of skin differentiation.  相似文献   

17.
Human promyelocytic leukemia cells (HL-60) were treated with several differentiation inducers, then the changes in the activity of cytosolic protein kinase C (PKC) isoforms were examined by hydroxylapatite chromatography and the species of the isoforms were determined immunologically. In three undifferentiated HL-60 cell lines examined, PKC alpha and beta isoforms were present, but PKC gamma isoform was not detected. When the cells were induced by dimethylsulfoxide, dibutyryl cAMP, or nicotinamide to differentiate into granulocytes, these two PKC isoforms each increased to about 2- to 3-fold. When retinoic acid was used as the inducer, in addition to PKC alpha and beta, a third PKC isoform appeared. This isoform was clearly distinct from rat PKC alpha, beta, and gamma, immunologically. This isoform showed a distinctly lower Ca(2+)-requirement (3 microM) than that of PKC alpha or beta (100 microM) and was more dependent on cardiolipin and phosphatidylethanolamine, compared with PKC alpha, beta, and gamma. These results suggest that while the increases in the activities of PKC alpha and beta isoforms are common in the differentiation program initiated by several inducers, including retinoic acid, the emergence of an unclassified PKC isoform is a retinoic acid-specific process.  相似文献   

18.
The independently folding C2 domain motif serves as a Ca(2+)-dependent membrane docking trigger in a large number of Ca(2+) signaling pathways. A comparison was initiated between three closely related C2 domains from the conventional protein kinase C subfamily (cPKC, isoforms alpha, beta, and gamma). The results reveal that these C2 domain isoforms exhibit some similarities but are specialized in important ways, including different Ca(2+) stoichiometries. In the absence of membranes, Ca(2+) affinities of the isolated C2 domains are similar (2-fold difference) while Hill coefficients reveal cooperative Ca(2+) binding for the PKC beta C2 domain but not for the PKC alpha or PKC gamma C2 domain (H = 2.3 +/- 0.1 for PKC beta, 0.9 +/- 0.1 for PKC alpha, and 0.9 +/- 0.1 for PKC gamma). When phosphatidylserine-containing membranes are present, Ca(2+) affinities range from the sub-micromolar to the micromolar (7-fold difference) ([Ca(2+)](1/2) = 0.7 +/- 0.1 microM for PKC gamma, 1.4 +/- 0.1 microM for PKC alpha, and 5.0 +/- 0.2 microM for PKC beta), and cooperative Ca(2+) binding is observed for all three C2 domains (Hill coefficients equal 1.8 +/- 0.1 for PKC beta, 1.3 +/- 0.1 for PKC alpha, and 1.4 +/- 0.1 for PKC gamma). The large effects of membranes are consistent with a coupled Ca(2+) and membrane binding equilibrium, and with a direct role of the phospholipid in stabilizing bound Ca(2+). The net negative charge of the phospholipid is more important to membrane affinity than its headgroup structure, although a slight preference for phosphatidylserine is observed over other anionic phospholipids. The Ca(2+) stoichiometries of the membrane-bound C2 domains are detectably different. PKC beta and PKC gamma each bind three Ca(2+) ions in the membrane-associated state; membrane-bound PKC alpha binds two Ca(2+) ions, and a third binds weakly or not at all under physiological conditions. Overall, the results indicate that conventional PKC C2 domains first bind a subset of the final Ca(2+) ions in solution, and then associate weakly with the membrane and bind additional Ca(2+) ions to yield a stronger membrane interaction in the fully assembled tertiary complex. The full complement of Ca(2+) ions is needed for tight binding to the membrane. Thus, even though the three C2 domains are 64% identical, differences in Ca(2+) affinity, stoichiometry, and cooperativity are observed, demonstrating that these closely related C2 domains are specialized for their individual functions and contexts.  相似文献   

19.
Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.  相似文献   

20.
The primary purpose of this investigation was to determine the relationship between phospholipase C (PLC) and diacylglycerol (DAG) sensitive protein kinase C isoforms in insulin signaling in skeletal muscle. Using an in vitro preparation of rat soleus muscle we found that insulin (0.6 nM) stimulated glucose transport was inhibited approximately 20 and 25% by the PKC inhibitor GF109203X and the phospholipase C inhibitor U73122 respectively (p<0.05). The combined effects of these inhibitors were no greater than the inhibitory effects of either compound alone. Western blot analysis revealed that insulin induced a redistribution of PKC beta II from the cytosol to the membrane that was reversed in the presence of GF109203X (1 microM) and U73122 (20 microM). Similarly, U73122 and GF109203X reversed the insulin induced increase in membrane associated phosphorylated (ser 660) PKC beta II. The novel finding of this investigation is that insulin induces an increase in PKC beta II translocation and phosphorylation through a U73122 sensitive pathway in quantatively the most important insulin responsive tissue, skeletal muscle. Furthermore, these results imply that PKC beta II may be one of the DAG sensitive isoforms involved in glucose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号