首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Sodium flux ratio in voltage-clamped squid giant axons   总被引:4,自引:3,他引:1       下载免费PDF全文
The sodium flux ratio across the axolemma of internally perfused, voltage-clamped giant axons of Loligo pealei has been measured at various membrane potentials. The flux ratio exponent obtained from these measurements was about unity and independent of membrane voltage over the 50 mV range from about -20 to l mV. These results, combined with previous measurements of ion permeation through sodium channels, show that the sodium channel behaves like a multi-ion pore with two ion binding sites that are rarely simultaneously occupied by sodium.  相似文献   

6.
Potassium flux ratio in voltage-clamped squid giant axons   总被引:14,自引:10,他引:4       下载免费PDF全文
The potassium flux ratio across the axolemma of internally perfused, voltage-clamped giant axons of Loligo pealei has been evaluated at various membrane potentials and internal potassium concentrations ([K]i). Four different methods were used: (a) independent measurement of one-way influx and efflux of 42K; (b) simultaneous measurement of net K current (IK) and 42K influx; (c) simultaneous measurement of IK and 42K efflux; and (d) measurement of potassium conductance and 42K influx at the potassium equilibrium potential. The reliability of each of these methods is discussed. The average value of the exponent n' in the Hodgkin-Keynes equation ranged from 1.5 at -4mV and 200 mM [K]i to 3.3 at -38 mV and 350 mM [K]i and appeared to be a function of membrane potential and possibly of [K]i. It is concluded that the potassium channel of squid giant axon is a multi-ion, single-file pore with three or more sites.  相似文献   

7.
Calcium influx in internally dialyzed squid giant axons   总被引:9,自引:4,他引:5       下载免费PDF全文
A method has been developed to measure Ca influx in internally dialyzed squid axons. This was achieved by controlling the dialyzed segment of the axon exposed to the external radioactive medium. The capacity of EGTA to buffer all the Ca entering the fiber was explored by changing the free EGTA at constant [Ca++]i. At a free [EGTA]i greater than 200 microM, the measured resting Ca influx and the expected increment in Ca entry during electrical stimulation were independent of the axoplasmic free [EGTA]. To avoid Ca uptake by the mitochondrial system, cyanide, oligomycin, and FCCP were included in the perfusate. Axons dialyzed with a standard medium containing: [ATP] = 2 mM, [Ca++]i = 0.06 microM, [Ca++]o = 10 mM, [Na+]i = 70 mM, and [Na+]o = 465 mM, gave a mean Ca influx of 0.14 +/- 0.012 pmol.cm-2.s-1 (n = 12. Removal of ATP drops the Ca influx to 0.085 +/- 0.007 pmol.cm-2.s-1 (n = 12). Ca influx increased to 0.35 pmol.cm-2,s-1 when Nao was removed. The increment was completely abolished by removing Nai+ and (or) ATP from the dialysis medium. At nominal zero [Ca++]i, no Nai-dependent Ca influx was observed. In the presence of ATP and Nai [Ca++]i activates the Ca influx along a sigmoid curve without saturation up to 1 microM [Ca++]i. Removal of Nai+ always reduced the Ca influx to a value similar to that observed in the absence of [Ca++]i (0.087 +/- 0.008 pmol.cm-2.s-1; n = 11). Under the above standard conditions, 50-60% of the total Ca influx was found to be insensitive to Nai+, Cai++, and ATP, sensitive to membrane potential, and partially inhibited by external Co++.  相似文献   

8.
Assuming a model of facilitated ionic transport across axonal membranes proposed by McIlroy (1975) and extended by McIlroy and Hahn (1978), it is shown that if the selectivity coefficient, πK, of the potassium conducting system ?59 the permeabilityP Ks, of the periaxonal barrier of the squid giant axon for K+ ions?(1.2±0.44)×10?4 cm sec?1 and the thickness of the periaxonal space ?477±168 Å. Using a value (10?4 cm sec?1) ofP Ks in the foregoing range the experimental curves for the steady state membrane ionic conductance versus measured membrane potential difference (p.d.), ?, of Gilbert and Ehrenstein (1969) are corrected for the effect of accumulation of K+ in the periaxonal space. This correction is most marked for the axon immersed in a natural ionic environment, whose conductance curve is shifted ?70mV along the voltage axis in the hyperpolarization direction. By assuming that the physico-chemical connection between a depolarization of the axonal membrane and the consequent membrane conductance changes is a Wien dissociative effect of the membrane's electric field on a weak electrolyte situated in the axolemma, the position of the peaks of the corrected conductance versus ? curves can be identified with zero membrane electric field and hence with zero p.d.across the axolemma. A set of values for the double-layer p.d.s at the axonal membrane interfaces with the external electrolytes in the vicinity of the K+ conducting pores can therefore be deduced for the various external electrolytes employed by Gilbert and Ehrenstein. A model of these double-layer p.d.s in which the membrane interfaces are assumed to possess fixed monovalent negatively charged sites, at least in the neighbourhood of the K+ conducting pores, is constructed. It is shown that, using the previously deduced values for the doublelayer p.d.s, such a model has a consistent, physically realistic solution for the distance between the fixed charged sites and for the dissociation constants of these sites in their interaction with the ions of the extramembrane electrolytes.  相似文献   

9.
Asymmetry currents were recorded from intracellularly perfused squid axons subjected to exactly equal positive and negative voltage clamp pulses at a temperature close to 0 degrees C. The voltage and time dependence of the asymmetry currents was studied at a holding potential of minus 80 to minus 100 mV. The effect of varying the holding potential was investigated. The latter experiments showed that the voltage dependence of the asymmetrical charge movement is different from the voltage dependence of the m system.  相似文献   

10.
Inactivation of the Na permeability has been studied in intact and perfused squid giant axons with the voltage clamp method. The main results are: 1. Upon depolarization inactivation develops along an exponential time course; the upper limit for an initial delay in the development of inactivation is 50-100 musec. 2. Adding 20-40 mM KCl to K-free external solution accelerates the development of inactivation and slows its removal. 3. Scorpion venoms increase the maintained conductance, i.e. make inactivation less complete; the voltage dependence of the maintained conductance is different from that of the peak conductance.  相似文献   

11.
Magnesium content and net fluxes in squid giant axons   总被引:1,自引:1,他引:0  
The Mg content of axons freshly dissected from living specimens of the tropical squid Doryteuthis plei was determined by atomic absorption spectroscopy to be 4.2 +/- 0.2 mmol/kg axoplasm. The axon's ability to maintain this physiological content of total intracellular Mg([Mg]i) was studied. Mgi was shown to be a linear function of Mgo when Mgo of incubating fluid was varied between 0 and 250 mM. When Mgo = 15 mM, Mgi was found to be the same in incubated fibers as in fibers freshly dissected. Mgi levels were unaffected by depolarization of the membrane by high Ko. Stimulation resulted in an extra influx of Mg of 0.05 pmol/(cm2 . impulse) when Mgo = 55 mM. Mgi was found to be a complicated function of the concentration of extracellular Na or Li (Xo), which was substituted for Tris. With 385 mM Lio the Mgi level was found to be 2.5-fold larger than the level observed with 385 mM Nao after incubation for 3 h. The function relating Mgo to Xo was qualitatively unaffected in axons poisoned with the mitochondrial uncoupler carbonyl cyanide, p-trifluorome-thoxy-phenylhydrazone (FCCP) and the inhibitor of glycolysis, iodoacetic acid (IAA); the absolute levels of Mgi, however, were some 30% higher in the poisoned axons at all [X]o explored. 2 h incubation of axons in a 333 mM Mg, 40 mM Li solution increased Mgi 3.5-fold in control axons and 5-fold in poisoned axons. These Mg-loaded axons were able to recover physiological levels of Mgi with a half-time of 3-5 h only if kept in a solution which contained Na (220 mM) regardless of whether the axons had been inhibited with FCCP + IAA. Therefore, it may be concluded that the physiological Mgi concentration can be maintained by the Na electrochemical gradient, even when the axon is metabolically poisoned.  相似文献   

12.
Instabilities and dynamic structure of the modified Hodgkin-Huxley equations (Adelman & FitzHugh, 1975) for sensitized axons were studied as a function of the sodium concentration in the external medium surrounding the axon. At the same time electrophysiological activities in squid giant axons were experimentally observed to confirm the results of the numerical calculation. It was found that the resting state of the axon was thermodynamically equivalent to a thermodynamic structure of an asymptotically stable equilibrium point. The state of spontaneous repetitive firing of action potentials corresponds to the dissipative structure with a stable limit cycle. The temporally coherent organization is realized through instability of the equilibrium point.  相似文献   

13.
Axons freshly dissected from living specimens of the tropical squid Dorytheutis plei have a calcium content of 68 mumol/kg of axoplasm. Fibers stimulated at 100 impulses/s in 100 mM Ca seawater increase their Ca content by 150 mumol/kg.min; axons placed in 3 Ca (choline) seawater increase their Ca content by 12 mumol/kg.min. Axons loaded with 0.2--1.5 mmol Ca/kg of axoplasm extruded Ca with a half time of 15--30 min when allowed to recover in 3 Ca (Na) seawater. The half time for recovery of loaded axons poisoned with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and iodoacetic acid (IAA) is about the same as control axons. Axons placed in 40 mM Na choline seawater (to reduce chemical gradient for Na) or in 40 mM Na, 410 mM K seawater to reduce the electrochemical gradient for Na to near zero either fail to lose previously loaded Ca or gain further Ca.  相似文献   

14.
Summary An analysis is presented of the changes in fluorescence intensity, associated with nerve stimulation, of 1-anilinonaphthalene-8-sulfonate (ANS) injected in squid axons. A preliminary and qualitative account of the physiological modifications produced by the ANS injection is also given. The time course of the fluorescence intensity during the first 300 sec following the onset of voltage-clamp is shown to be exponential with a time constant of about 35 msec, fairly independent of the amplitude and sign of the applied voltage, the intensity increasing during hyperpolarizations and decreasing during depolarizations. Data are presented on the relationship between the amplitude of the changes in fluorescence intensity and the voltage applied, the amplitude of the changes associated with depolarizations being measured at the time of occurence of the peak inward current. The interpretation of the changes in fluorescence intensity in terms of electrophoretic effects or as being due to a direct effect of the electric field upon the quantum yield of ANS fluorescence, is hardly compatible with the results of our present analysis.  相似文献   

15.
Summary Under intracellular perfusion with a solution containing K+ as the sole cation species, squid giant axons were found to be capable of developing all-or-none action potentials when immersed in a medium in which CaCl2 was the only electrolyte. The adequate range of ion concentration for demonstrating this capability was mentioned. The reversal potential level measured by the voltage-clamp technique varied directly with the logarithm of the concentration of extracellular Ca-ion; the proportionality constant was close toRT/2F. The action potential observed under this Ca–K bi-ionic condition could not be suppressed by addition of tetrodotoxin or saxitoxin to the external medium. The external Ca-ion could be replaced with Co- or Mn-ion without eliminating the capability of the axons to develop action potentials. D-600 could not suppress the inward current observed under the voltage-clamp condition, but 4-aminopyridine could suppress it. The experimental findings were interpreted based on the current channel hypothesis and on the macromolecular theory.  相似文献   

16.
17.
Summary Measurements were made of36Cl influx into squid giant axons whose internal solutes were controlled by means of internal dialysis. When the intracellular chloride concentration was 50mm and the internal concentration of adenosine 5-triphosphate (ATP) was 4mm, the average chloride influx was 11.6 pmoles/cm2×sec. When the axons were dialyzed with an ATP-free solution, the average influx fell to 5.1 pmoles/cm2×sec. The effect was fully reversible upon the return of ATP to the dialysis fluid. Chloride-36 influx in the presence and absence of ATP was found to be inversely related to the internal chloride concentration.  相似文献   

18.
We have localized the classical voltage-gated K(+) channel within squid giant axons by immunocytochemistry using the Kv1 antibody of Rosenthal et al. (1996). Widely dispersed patches of intense immunofluorescence were observed in the axonal membrane. Punctate immunofluorescence was also observed in the axoplasm and was localized to approximately 25-50-microm-wide column down the length of the nerve (axon diameter approximately 500 microm). Immunoelectronmicroscopy of the axoplasm revealed a K(+) channel containing vesicles, 30-50 nm in diameter, within this column. These and other vesicles of similar size were isolated from axoplasm using a novel combination of high-speed ultracentrifugation and controlled-pore size, glass bead separation column techniques. Approximately 1% of all isolated vesicles were labeled by K(+) channel immunogold reacted antibody. Incorporation of isolated vesicle fractions within an artificial lipid bilayer revealed K(+) channel electrical activity similar to that recorded directly from the axonal membrane by Llano et al. (1988). These K(+) channel-containing vesicles may be involved in cycling of K(+) channel protein into the axonal membrane. We have also isolated an axoplasmic fraction containing approximately 150-nm-diameter vesicles that may transport K(+) channels back to the cell body.  相似文献   

19.
Effects of N-alcohols on potassium conductance in squid giant axons   总被引:1,自引:0,他引:1  
The effect of bath application of several short chain N-alcohols on voltage-dependent potassium conductance has been studied in intact giant axons of Loligo forbesi under voltage-clamp conditions. All tested alcohols (methanol, ethanol, propanol, butanol, heptanol and octanol) were found to depress potassium conductance only at concentrations much larger than those necessary to reduce sodium conductance. The efficacy of the different molecules was correlated with the carbon-chain length. In all cases the effects were found to be at least partly reversible. Low concentrations of propanol (100 mM) or heptanol (1 mM) were found to increase potassium conductance whereas higher concentrations had the usual depressing effect. The two alcohols were found to induce a slow inactivation of the potassium conductance. A detailed analysis of the time course of the turning-on of the potassium current for various pulse potentials in the presence of TTX revealed that, for membrane potential values more positive than -20 mV, the time constant of activation was reduced in the presence of propanol or heptanol. The delay which separates the change in potential and the turning-on of the potassium current, which was systematically analysed for different pulse and prepulse potential values, was increased by the two alcohols, the curve relating this delay to prepulse potential being shifted towards larger (positive) delays. This high degree of complexity in the effects on potassium conductance suggests that the alcohol molecules modify several more or less independent mechanisms associated with the turning-on of the potassium current.  相似文献   

20.
The effects of n-octanol and n-decanol on nerve membrane sodium channels were examined in internally perfused, voltage-clamped squid giant axons. Both n-octanol and n-decanol almost completely eliminated the residual sodium conductance at the end of 8-ms voltage steps. In contrast, peak sodium conductance was only partially reduced. This block of peak and residual sodium conductance was very reversible and seen with both internal and external alkanol application. The differential sensitivity of peak and residual conductance to alkanol treatment was eliminated after internal pronase treatment, suggesting that n-octanol and n-decanol enhance the normal inactivation mechanism rather than directly blocking channels in a time-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号