首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The newly constructed adenovirus type 5 mutant in1 carries a single AT base pair insertion immediately after nucleotide position 1715 in the E1B gene sequence which destroys the proximal AUG normally present in E1B messages and prevents production of intact E1B 19-kDa protein in infected cells. We have used in1, variants of in1 containing mutant alleles of viral genes known to enhance transformation frequency, and adenovirus type 5 mutant dl337 (S. Pilder, J. Logan, and T. Shenk, J. Virol. 52:664-671, 1984), in which the sequence between nucleotides 1770 and 1916 within the 19-kDa reading frame is deleted, to test the generally accepted hypothesis that this E1B protein is essential for the transformation of rodent cells and maintenance of the transformed phenotype. We find that these mutants transform rat embryo cells, rat kidney and mouse kidney primary cells, and cells of the 3Y1 rat line with decreased frequencies only when virus is added to these various cells at high input multiplicities of infection. In contrast, when lower doses of virus are used, the mutants transform with wild-type frequencies. Cells infected with higher doses of mutant virus show increased levels of DNA degradation and cell killing compared with those of cells infected with the same levels of wild-type virus, and these effects most likely contribute to the decreased transformation frequencies observed. On the basis of these results and the results of phenotypic analyses of numerous transformants, we propose that the E1B 19-kDa protein is not required for induction and/or maintenance of transformed-cell characteristics in rodent cells infected with adenovirus type 5.  相似文献   

3.
The intracellular location of the adenovirus type 5 E1B 55-kilodalton (kDa) protein, particularly the question of whether it is associated with nuclear pore complexes, was examined. Fractionation of adenovirus type 5-infected HeLa cell nuclei by an established procedure (N. Dwyer and G. Blobel, J. Cell. Biol. 70:581-591, 1976) yielded one population of E1B 55-kDa protein molecules released by digestion of nuclei with RNase A and a second population recovered in the pore complex-lamina fraction. Free and E1B 55-kDa protein-bound forms of the E4 34-kDa protein (P. Sarnow, C. A. Sullivan, and A. J. Levine, Virology 120:387-394, 1982) were largely recovered in the pore complex-lamina fraction. Nevertheless, the association of E1B 55-kDa protein molecules with this nuclear envelope fraction did not depend on interaction of the E1B 55-kDa protein with the E4 34-kDa protein. Comparison of the immunofluorescence patterns observed with antibodies recognizing the E1B 55-kDa protein or cellular pore complex proteins and of the behavior of these viral and cellular proteins during in situ fractionation suggests that the E1B 55-kDa protein does not become intimately or stably associated with pore complexes in adenovirus-infected cells.  相似文献   

4.
Infection with adenovirus mutants carrying either point mutations or deletions in the coding region for the 19-kDa E1B gene product (19K protein) causes degradation of host cell and viral DNAs (deg phenotype) and enhanced cytopathic effect (cyt phenotype). Therefore, one function of the E1B 19K protein is to protect nuclear DNA integrity and preserve cytoplasmic architecture during productive adenovirus infection. When placed in the background of a virus incapable of expressing a functional E1A gene product, however, E1B 19K gene mutations do not result in the appearance of the cyt and deg phenotypes. This demonstrated that expression of the E1A proteins was responsible for inducing the appearance of the cyt and deg phenotypes. By constructing a panel of viruses possessing E1A mutations spanning each of the three E1A conserved regions in conjunction with E1B 19K gene mutations, we mapped the induction of the cyt and deg phenotypes to the amino-terminal region of E1A. Viruses that fail to express conserved region 3 (amino acids 140 to 185) and/or 2, (amino acids 121 to 185) or nonconserved sequences between conserved regions 2 and 1 of E1A (amino acids 86 to 120) were still capable of inducing cyt and deg. This indicated that activities associated with these regions, such as transactivation and binding to the product of the retinoblastoma susceptibility gene, were dispensable for induction of E1A-dependent cytotoxic effects. In contrast, deletion of sequences in the amino terminus of E1A (amino acids 22 to 107) resulted in extragenic suppression of the cyt and deg phenotypes. Therefore, a function affected by deletion of amino acids 22 to 86 of E1A is responsible for exerting cytotoxic effects in virally infected cells. Furthermore, transient high-level expression of the E1A region using a cytomegalovirus promoter plasmid expression vector was sufficient to induce the cyt and deg phenotypes, demonstrating that E1A expression alone is sufficient to exert these cytotoxic effects and that other viral gene products are not involved. Finally, placing E1A expression under the control of a strong promoter did not alter the requirement for E1B in the transformation of primary cells. One possibility is that the E1B 19K protein is required to overcome the cytotoxic effects of E1A protein expression and thereby enable primary cells to become transformed.  相似文献   

5.
E White  D Spector    W Welch 《Journal of virology》1988,62(11):4153-4166
Five distinct localization patterns were observed for the adenovirus E1A proteins in the nuclei of infected HeLa cells: diffuse, reticular, nucleolar, punctate, and peripheral. The variable distribution of E1A was correlated with the time postinfection and the cell cycle stage of the host cell at the time of infection. All staining patterns, with the exception of peripheral E1A localization, were associated with the early phase of infection since only the diffuse, reticular, nucleolar, and punctate staining patterns were observed in the presence of hydroxyurea. Because the E1A proteins (12S and 13S) stimulate the expression of the cellular heat shock 70-kilodalton protein (hsp70), we examined the intracellular distribution of hsp70 in the adenovirus-infected cells. Whereas hsp70 was predominantly cytoplasmic in the cells before infection, after adenovirus infection most of the protein was now found within the nucleus. Specifically, hsp70 was found within the nucleoli as well as exhibiting reticular, diffuse, and punctate nuclear staining patterns, analogous to those observed for the E1A proteins. Double-label indirect immunofluorescence of E1A and hsp70 in infected cells demonstrated a colocalization of these proteins in the nucleus. Translocation of hsp70 to the nucleus was dependent upon both adenovirus infection and expression of the E1A proteins. The localization of hsp70 was unaltered by infection with an E1A 9S cDNA virus which does not synthesize a functional E1A gene product. Moreover, the discrete nuclear localization patterns of E1A and the colocalization of E1A with hsp70 were not observed in adenovirus-transformed 293 cells which constitutively express E1A and E1B. E1A displayed exclusively diffuse nuclear staining in 293 cells; however, localization of E1A into the discrete nuclear patterns occurred after adenovirus infection of 293 cells. Immunoprecipitation of labeled infected-cell extracts with a monoclonal antibody directed against the E1A proteins resulted in precipitation of small amounts of hsp70 along with E1A. These data indicate that the adenovirus E1A proteins colocalize with, and possibly form a physical complex with, cellular hsp70 in infected cells. The relevance of this association, with respect to the function of these proteins during infection and the association of other oncoproteins with hsp70, is discussed.  相似文献   

6.
7.
Cooperation of the nuclear oncogene E1A with the E1B oncogene is required for transformation of primary cells. Expression vectors were constructed to produce the 19-kilodalton (19K) and 55K E1B proteins under the direction of heterologous promoters in order to investigate the role of individual E1B proteins in transformation. Coexpression of E1A and either the 19K or 55K E1B gene products was sufficient for the formation of transformed foci in primary rat cells at half the frequency of an intact E1B gene, suggesting that the 19K and 55K proteins function via independent pathways in transformation. Furthermore, the effects of Ha-ras and the E1B 19K gene product were additive when cotransfected with E1A, suggesting that the 19K protein functions in transformation by a mechanism independent from that of ras as well. Although expression of E1A and either E1B protein was sufficient for the subsequent growth of cells in long-term culture, the 19K protein was required to support growth in semisolid media. As the 19K protein has been shown to associate with and disrupt intermediate filaments (IFs) when transiently expressed with plasmid vectors (E. White and R. Cipriani, Proc. Natl. Acad. Sci. USA, 86:9886-9890, 1989), the organization of IFs in transformed cells was investigated. Primary rat cells transformed by plasmids encoding E1A plus the E1B 19K protein showed gross perturbations of IFs, whereas cell lines transformed by plasmids encoding E1A plus the E1B 55K protein or E1A plus Ha-ras did not. These results suggest that an intact IF cytoskeleton may inhibit anchorage-independent growth and that the E1B 19K protein can overcome this inhibition by disrupting the IF cytoskeleton.  相似文献   

8.
S Zhang  S Mak    P E Branton 《Journal of virology》1992,66(4):2302-2309
To analyze the structure and function of the E1B 19,000-molecular-weight protein (19K protein) (163R) of human adenovirus type 12, mutants were produced at various positions across the 163R-coding sequence. Viruses bearing mutations within the first 100 or so amino acids yielded unstable 163R-related products, induced DNA degradation and enhanced cytopathic effect (cyt/deg phenotype) in KB cells, and transformed primary rodent cells at much lower efficiencies than wild-type (wt) virus. Deletion of the final 16 residues at the carboxy terminus had no phenotypic effect. Alteration of residue 105 reduced transforming efficiency significantly, suggesting that this region of 163R is functionally important. Disruption of the AUG initiation codon at nucleotide 1542 blocked production of 163R completely but resulted in higher levels of E1B 55K-482R protein synthesis and a transforming efficiency similar to that of wt virus. These data suggested that while 163R is of some importance, normal transforming efficiencies can be obtained in its absence if 482R is overexpressed.  相似文献   

9.
Huntington''s disease (HD) is a neurodegenerative disorder characterized by progressive neuronal death in the basal ganglia and cortex. Although increasing evidence supports a pivotal role of mitochondrial dysfunction in the death of patients'' neurons, the molecular bases for mitochondrial impairment have not been elucidated. We provide the first evidence of an abnormal activation of the Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNip3) in cells expressing mutant Huntingtin. In this study, we show an abnormal accumulation and dimerization of BNip3 in the mitochondria extracted from human HD muscle cells, HD model cell cultures and brain tissues from HD model mice. Importantly, we have shown that blocking BNip3 expression and dimerization restores normal mitochondrial potential in human HD muscle cells. Our data shed light on the molecular mechanisms underlying mitochondrial dysfunction in HD and point to BNip3 as a new potential target for neuroprotective therapy in HD.  相似文献   

10.
11.
《Seminars in Virology》1994,5(5):341-348
Adenovirus infection and E1A gene expression stimulates cellular proliferation as a mechanism to facilitate virus replication. Programmed cell death (apoptosis) is the cellular response to this deregulation of growth control by E1A during viral infection and neoplastic transformation. To combat the suicidal elimination of virus infected cells by apoptosis, adenovirus has evolved a mechanism to disengage the apoptotic program of the cell. This anti-apoptotic function is encoded within the adenovirus E1B 19 kDa and 55 kDa gene products. Both viral products encoded by E1B act at independent and overlapping points in the cell death process to ensure that the premature death of the host cell does not take place and that viral infection can progress to completion. The E1B 55K protein functions as an anti-apoptotic gene product by direct physical interference with the p53 tumor suppressor protein, whereas the E1B 19K protein acts to inhibit p53-dependent and probably p53-independent apoptosis by a mechanism that resembles that of the human bcl-2 protooncogene.  相似文献   

12.
13.
The adenovirus E1A and E1B proteins are required for transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). E1A alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency transformation. Like E1A, the tumoricidal cytokine tumor necrosis factor alpha (TNF-alpha) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-alpha-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-alpha-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-alpha or E1A, the E1B 19K protein enhances the transforming activity of E1A and enables adenovirus to evade TNF-alpha-dependent immune surveillance.  相似文献   

14.
The 55-kDa product of early region 1B (E1B) of human adenoviruses is required for viral replication and participates in cell transformation through complex formation with and inactivation of the cellular tumor suppressor p53. We have used both biochemical and genetic approaches to show that this 496-residue (496R) protein of adenovirus type 5 is phosphorylated at serine and threonine residues near the carboxy terminus within sequences characteristic of substrates of casein kinase II. Mutations which converted serines 490 and 491 to alanine residues decreased viral replication and greatly reduced the efficiency of transformation of primary baby rat kidney cells. Such mutant 496R proteins interacted with p53 at efficiencies similar to those of wild-type 496R but only partially inhibited p53 transactivation activity. These results indicated that phosphorylation at these carboxy-terminal sites either regulates the inhibition of p53 or regulates some other 496R function required for cell transformation.  相似文献   

15.
Antipeptide sera were prepared in rabbits against synthetic peptides corresponding to the predicted amino and carboxy termini of the early region 1B 176R (19-kilodalton [kDa]) protein of human adenovirus type 5. Both antisera specifically immunoprecipitated the 19- and 18.5-kDa forms of the 176R protein observed previously with antitumor sera. These data suggested that both species are full-length molecules of 176 residues. To identify posttranslational modifications that could explain the formation of these multiple species and possibly their known association with membranes, studies were carried out to determine whether they are glycosylated or acylated. Neither the 19- nor the 18.5-kDa species appeared to be a glycoprotein, however, they were labeled with [3H]palmitate and [3H]myristate, indicating that both species are acylated. Thus, whereas acylation does not appear to be the cause of the multiple species, it could play a role in the membrane association of these viral proteins. The acylation of 176R was found to be unusual. The fatty acid linkage was resistant to treatment with hydroxylamine or methanol-KOH, suggesting that acylation was through an amide bond. In addition, both palmitate and myristate were present in 176R, suggesting either a lack of specificity in the acylation reaction or the existence of more than one acylation site.  相似文献   

16.
Viruses carrying foreign genes are often used for the production of recombinant proteins in mammalian cells and other eukaryotic expression systems. Though high levels of gene expression are possible using viral vectors, the host cell generally responds to the infection by inducing apoptotic cell death within several days, abruptly ending protein production. It has recently been demonstrated, however, that apoptosis can be suppressed in virally infected cells using anti-apoptotic genes, such as bcl-2. In this study, stably transfected rat carcinomal cell lines, AT3-bcl2 and AT3-neo, were infected with a Sindbis virus carrying the gene for chloramphenicol acetyltransferase (CAT) in an effort to determine the effect of bcl-2 on cell viability and recombinant protein production. Infected AT3-bcl2 cells consistently maintained viabilities close to 100% and a growth rate equivalent to that of uninfected cells (0.040 h-1). In contrast, the Sindbis viral vector induced apoptosis in the AT3-neo cells, which were all dead by three days post-infection. Though infected AT3-neo cells generated higher levels of heterologous protein, over 1000 mUnits per well, CAT activity fell to zero by two days post-infection. In contrast, chloramphenicol acetyltransferase was present in AT3-bcl2 cells for almost a week, reaching a maximum level of 580 mUnits per well. In addition, recombinant protein production in AT3-bcl2 cells was extended and amplified by the regular addition of virus to the culture medium, a process which resulted in expression for the duration of the cell culture process.Abbreviations BHK Baby Hamster Kidney - CAT chloramphenicol acetyltransferase - dsSV-CAT double subgenomic Sindbis viral vector containing the gene for CAT - MOI multiplicity of infection  相似文献   

17.
Infection of human embryonic kidney cells with adenovirus type 12 results in the induction of damage at specific (17q21-22, 1p36, 1q21, and 1q42-43) and random sites in the cellular chromosomes. A previous study by Durnam et al. (D. M. Durnam, P. P. Smith, J. C. Menninger, and J. K. McDougall, Cancer Cells 4:349-354, 1986) indicated that the expression of viral early region 1 (E1) is sufficient for the induction of damage at band 17q21-22. In the present report we used an adenovirus type 12-adenovirus type 5 recombinant with E1A hybrid sequences as well as viruses with mutations in the adenovirus type 12 E1B genes to map adenovirus type 12 E1 functions involved in the induction of genetic damage. Our results show that the expression of the E1A proteins is not sufficient for this effect. On the other hand, mutations within the E1B 55-kilodalton protein but not the E1B 19-kilodalton protein affect the ability of the virus to induce both specific and random chromosomal damage.  相似文献   

18.
Zhao LY  Liao D 《Journal of virology》2003,77(24):13171-13181
The adenovirus E1B 55-kDa protein is a potent inhibitor of p53-mediated transactivation and apoptosis. The proposed mechanisms include tethering the E1B repression domain to p53-responsive promoters via direct E1B-p53 interaction. Cytoplasmic sequestration of p53 by the 55-kDa protein would impose additional inhibition on p53-mediated effects. To investigate further the role of cytoplasmic sequestration of p53 in its inhibition by the E1B 55-kDa protein we systematically examined domains in both the Ad12 55-kDa protein and p53 that underpin their colocalization in the cytoplasmic body and show that the N-terminal transactivation domain (TAD) of p53 is essential for retaining p53 in the cytoplasmic body. Deletion of amino acids 11 to 27 or even point mutation L22Q/W23S abolished the localization of p53 to the cytoplasmic body, whereas other parts of TAD and the C-terminal domain of p53 are dispensable. This cytoplasmic body is distinct from aggresome associated with overexpression of some proteins, since it neither altered vimentin intermediate filaments nor associated with centrosome or ubiquitin. Formation of this structure is sensitive to mutation of the Ad12 55-kDa protein. Strikingly, mutation S476/477A near the C terminus of the Ad12 55-kDa protein eliminated the formation of the cytoplasmic body. The equivalent residues in the Ad5 55-kDa protein were shown to be critical for its ability to inhibit p53. Indeed, Ad12 55-kDa mutants that cannot form a cytoplasmic body can no longer inhibit p53-mediated effects. Conversely, the Ad12 55-kDa protein does not suppress p53 mutant L22Q/W23S-mediated apoptosis. Finally, we show that E1B can still sequester p53 that contains the mitochondrial import sequence, thereby potentially preventing the localization of p53 to mitochondria. Thus, cytoplasmic sequestration of p53 by the E1B 55-kDa protein plays an important role in restricting p53 activities.  相似文献   

19.
Previous studies have indicated that the adenovirus type 5 E1B 55-kDa protein facilitates viral DNA synthesis in normal human foreskin fibroblasts (HFFs) but not in primary epithelial cells. To investigate this apparent difference further, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected by the mutant AdEasyE1Δ2347, which carries the Hr6 frameshift mutation that prevents production of the E1B 55-kDa protein, in an E1-containing derivative of AdEasy. Impaired viral DNA synthesis was observed in normal HFFs but not in normal human bronchial epithelial cells infected by this mutant. However, acceleration of progression through the early phase, which is significantly slower in HFFs than in epithelial cells, eliminated the dependence of efficient viral DNA synthesis in HFFs on the E1B 55-kDa protein. These observations suggest that timely synthesis of the E1B 55-kDa protein protects normal cells against a host defense that inhibits adenoviral genome replication. One such defense is mediated by the Mre11-Rad50-Nbs1 complex. Nevertheless, examination of the localization of Mre11 and viral proteins by immunofluorescence suggested that this complex is inactivated similarly in AdEasyE1Δ2347 mutant-infected and AdEasyE1-infected HFFs.  相似文献   

20.
The adenovirus type 12 mutants in700 and pm700 carry site-specific mutations within the reading frame encoding the E1B 19-kilodalton protein (19K protein) which prevent the production of the intact 19K protein. In cultures of human A549 cells, these mutants grow just as well as the wild-type virus does, but they display a large-plaque (lp), cytocidal (cyt) phenotype. DNA in these infected cells is not degraded, but at late times in human KB cells infected by the mutants, the mutants display a DNA degradation (deg) phenotype. The transformation phenotype of these mutants is also host range. Although the mutants are defective for transformation of the 3Y1 rat cell line, they transform rat and mouse primary kidney cells in vitro at wild-type efficiency and are capable of inducing tumors in rats. These results support the view that the type 12 E1B 19K protein is not obligatory for oncogenic transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号