首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Costochondral grafting for reconstruction of the Pruzansky type III mandible has given variable results. Lengthening of the rib graft by means of distraction had been advocated when subsequent growth of the grafted mandible is inadequate. This retrospective study reviews a series of patients with mandibular costochondral grafts who underwent subsequent distraction osteogenesis of the graft. A retrospective review identified two patient groups: group 1 consisted of individuals (n = 9) who underwent costochondral rib grafting of the mandible followed by distraction osteogenesis several months later at a rate of 1 mm/day. Group 2 consisted of patients with Pruzansky type II mandibles who had distraction osteogenesis without prior rib grafting (n = 9). The biomechanical parameters, orthodontic treatment regimens, and complications were examined versus patient age and quality of the rib graft. Distraction osteogenesis was successfully performed in six of the rib graft patients (group 1) and in all of the group 2 individuals. On the basis of the Haminishi scale, the computed tomographic scan appearance of the regenerate was classified as "standard or external" in six of the group 1 patients and as either "agenetic" or "pillar" (fibrous union) in the remaining three patients. In group 1, the average device was expanded 23 mm (range, 20 to 30 mm). Group 2 mandibular distraction results were all classified as either standard or external, and there was an average device expansion of 22.4 mm (range, 16 to 30 mm). The length of consolidation averaged 12.6 weeks in group 1, compared with 8.5 weeks in the traditional mandibular distraction patients (group 2). The mean shift of the dental midline to the contralateral side was 2.5 mm in group 1 versus 4.0 mm in group 2. Complex multiplanar and transport distractions were successfully performed on grafts of adequate bony volume. All four patients in group 1 with tracheostomies were successfully decannulated after consolidation. Rib graft distraction complications included pin tract infections in two patients, hardware failure with premature pin pullout in one patient, and evidence of fibrous nonunions in three young patients with single, diminutive rib grafts. In group 2, there were no distraction failures. Distraction osteogenesis can be successfully performed on costochondral rib grafts of the mandible; however, the complication rate is higher than in non-rib-graft patients. Performing the technique on older, more cooperative individuals seems to reduce this risk. In addition, placement of a double rib graft or an iliac bone graft of sufficient volume to create a neomandible with greater bone stock is an absolute requirement to decrease the risk of fibrous nonunion and provide a bone base of sufficient size for retention of the distraction device and manipulation of the regenerate.  相似文献   

2.
Bone transport is a well accepted technique for the treatment of large bony defects. This process is mechanically driven, where mechanical forces play a central role in the development of tissues within the distracted gap. One of the most important mechanical factors that conditions the success of bone regeneration during distraction osteogenesis is the fixator stiffness not only during the distraction phase but also during the consolidation phase. Therefore, the aim of the present work is to evaluate the effect of the stiffness of the fixator device on the interfragmentary movements and the tissue outcome during the consolidation phase. A previous differentiation model (Claes and Heigele, 1999) is extended in order to take into account the different behaviors of the tissues in tension and compression. The numerical results that were computed concur with experimental findings; a stiff fixator promotes bone formation while the excessive motion induced by extremely flexible fixators is adverse for bony bridging. Experimental interfragmentary movement is similar to that computed numerically.  相似文献   

3.
Distraction osteogenesis involving bone transport enables the reconstruction of large bone defects. The main bone fragments are usually stablilised externally, an intermediate bone segment is separated and moved through the defect at a rate of about 1 mm/day. New high-quality bone is built up in the constantly enlarging osteotomy gap. A major problem associated with the method is the fact that the fixation pins are also moved over the same distance, and cut through the soft tissue, often resulting in painful pin tract infections and ugly scars. An automatic motorized bone transport system employing a single central cable now eliminates this problem. The system can be combined with any external fixateur, since the relevant implanted parts for bone transport are independent of the external stabilizer. The surgical procedure, which is easy on the patient, consists of bone segment separation, central cable fixation, and stabilisation of the main fragments, and requires the use of numerous special tools. The distraction itself results in significantly less soft tissue irritation and pain. Pin tract infections are rare, so that changeover to internal fixation after completion of bone transport carries little risk of infection. This article details the technical features of the stabilizing system and the transport and the control systems, and describes the clinical application in a patient.  相似文献   

4.
Distraction osteogenesis is an established treatment strategy in the reconstruction of the craniofacial skeleton. The underlying mechanisms that drive bone formation during this process are largely unknown, but a regulatory role for mechanical force is believed to be critical. The integrin-mediated signal transduction cascade is a primary pathway by which signal transduction of mechanical stimuli (i.e., mechanotransduction) occurs. Focal adhesion kinase (FAK) is a significant regulator in this pathway. The authors hypothesize that mechanical forces created during distraction osteogenesis are responsible for the osteogenic response that takes place, and that these changes arise through integrin-dependent mechanotransduction. Using a rat model of distraction osteogenesis, the authors examined the expression of FAK in critical size defects (n = 15), subcritical size defects (n = 15), and mandibles undergoing distraction osteogenesis (n = 15). Their findings demonstrated FAK immunolocalization in mandibles undergoing distraction osteogenesis, but not in the critical size defects or in subcritical size defects, despite varying degrees of bone formation in the latter two groups. Furthermore, bone sialoprotein mRNA in situ hybridization patterns were found to mirror FAK immunolocalization patterns in mandibles undergoing distraction osteogenesis, demonstrating an association of FAK expression with the osteogenic process specific to distraction osteogenesis. These findings suggest that the bone formation in distraction osteogenesis is regulated by mechanical force by means of integrin-dependent mechanotransduction pathways.  相似文献   

5.
Popularized by Gavril Ilizarov in the 1960s, monofocal distraction osteogenesis has become a well-established method of endogenous bone engineering. This revolutionary surgical technique has significantly augmented the available reconstructive orthopedic and craniomaxillofacial procedures. Bifocal distraction osteogenesis, or bone transportation, is a modification of monofocal distraction that involves moving a free segment of living bone to fill an intercalary bone defect. Bifocal distraction has been applied successfully to reconstruct complex mandibular and long bone defects. Because traumatic or postsurgical calvarial defects do not spontaneously heal in humans older than 18 to 24 months of age, we hypothesized that bifocal distraction osteogenesis could be applied to the skull to close critical size calvarial defects. Critical size (15 x 15 mm) calvarial defects were created in eight New Zealand White rabbits. Next, a 15-mm x 10-mm calvarial box osteotomy was created just anterior to the skull defect. This osteotomy created a free bone segment that could be transported. A custom-made transport distraction device was fixed into place and the skin incision was closed. After a 4-day latency period, the distraction device was activated (0.5 mm once daily for 30 days) in seven animals; the distraction device in one animal was not activated and served as a control. All animals underwent 30 days of consolidation and were then killed. Radiographs and computed tomographic scans were performed at the following time points: end of latency period (postoperative day 4), mid-distraction (postoperative day 19), and end of consolidation period (postoperative day 64). Gross and histologic analysis was performed to evaluate the quality of the bony regenerate. The control animal healed with a fibrous union. Complete closure of the skull defects was observed in five of seven rabbits at the end of the consolidation period. One animal was removed from the study because of an early loosening of the distraction device, and one was removed because of device failure. Of the remaining five animals that completed the distraction protocol, radiographs and computerized tomographic scans showed successful ossification in all five rabbits at the end of the consolidation period. This study suggests that transport distraction osteogenesis is a promising technique that may be applied to a variety of commonly encountered craniofacial problems such as nonhealing calvarial defects.  相似文献   

6.
Distraction osteogenesis is a form of in vivo tissue engineering in which the gradual separation of cut bone edges results in the generation of new bone. In this study, the temporal and spatial expression of bone morphogenetic proteins (BMPs) 2, 4, and 7 was examined in a rabbit model of mandibular distraction osteogenesis. Fourteen skeletally mature male rabbits were studied. After osteotomy, a distractor was applied to one side of the mandible. After 1 week of latency, distraction was initiated at 0.25 mm every 12 hours for 3 weeks (distraction period), followed by a 3-week consolidation period. Two animals were killed each week after surgery. The generate bone was analyzed for the expression of BMP-2, -4, and -7 by using standard bone histological and immunohistochemical techniques. BMP-2 and -4 were highly expressed in osteoblastic cells during the distraction period and in chondrocytes during the consolidation period. BMP-7 demonstrated relatively minor expression in osteoblastic cells during the distraction period. All BMPs were strongly expressed in vascularized connective tissue during the distraction period. These data indicate that BMPs participate in the translation of mechanical stimuli into a biological response during mandibular distraction osteogenesis.  相似文献   

7.
The purpose of this investigation was to study the effect of bone morphogenetic protein (BMP), transforming growth factor beta-induced gene h3 (betaig-h3), and chitosan on early bony consolidation in distraction osteogenesis in a dog model. Sixteen dogs were used for this study. The lateral surface of the mandibular body was exposed in the subperiosteal plane and the vertical osteotomy on the mandibular body was extended downward. An external distraction device was applied to the mandibular body, and the mandibular distraction was started 5 days after the operation at a rate of 2 mm/day up to a 10-mm distraction after 5 days. The experimental group was then divided into a control group, a BMP group, a betaig-h3 group, and a chitosan group, depending on the type of implantation material used in the distracted area. On the same day after completing the distraction, BMP, betaig-h3, or chitosan was implanted into the distracted area. No material was implanted into the distracted area in the control group. After implanting the materials, the distraction device was left in place for 7 weeks to allow for bony consolidation. Four dogs were allocated to each group. Two dogs in each group, a total of eight dogs, were killed 4 weeks after completing the distraction and the other eight dogs were killed after 7 weeks. Serial radiographs were obtained every week after completing the distraction. New bone was generated in the distracted zone in all groups. In the BMP group, the formation of active woven bone was observed throughout the distracted zone, and the new bone appeared to be nearly normal cortical bone 7 weeks after implantation. In the betaig-h3 and chitosan groups, the development of new bone was observed in the distracted zone after 7 weeks; however, the amount was less than that in the BMP group. In the control group, the new bone was observed at the edges of the distracted zone. These findings suggest that BMP seems to be very effective in early bony consolidation in distraction osteogenesis.  相似文献   

8.
The purpose of the study was to follow the early events in bone formation and neovascularization during maxillary distraction and after the consolidation period and to define the characterization of the new bone in the distracted area. Maxillary osteotomy was performed in seven sheep. In five animals, an external distraction device was used for maxillary lengthening of 20 mm at a rate of 1 mm/day for 20 days. Another two animals served as controls without distraction. Sequential biopsies were performed. The methods used for analysis were histologic, immunohistochemical, and ultrastructural by transmission electron microscopy. During the 5 days of latency, a fibrin clot was formed that after 5 days of distraction was replaced by granulation tissue, proliferating mesenchyme-like cells, and capillaries. After 10 days of distraction, the regenerated tissue could be divided into three main zones and two transitional areas: a central zone occupied by many polygonal mesenchyme-like cells and spindle-shaped cells that proliferated intensively; two paracentral zones on both sides of the central zone in which many cells showed morphologic signs of apoptosis leading to a decreased number of fibroblast-like cells embedded in wavy collagen fibers; a transitional area from the central to the paracentral zone in which concentric cellular colonies were believed to represent a novel form of vasculogenesis; distal-proximal zones, located on both sides of the paracentral zones and in continuation with the old bone, showed delicate new woven bone trabeculae that grew continuously in the direction of lengthening and gradually became mineralized; and a transitional area from the paracentral to the distal-proximal zones in which there was recruitment of preosteoblasts from the distracted tissue to the trabecular tips. These further differentiated into osteoblasts that contributed to the trabecular growth. The histologic feature pattern was similar after 15 and 20 days of continuous distraction. At the end of lengthening, after 20 days, delicate longitudinally oriented trabeculae continued to grow by recruiting preosteogenic cells from the central distracted tissue, became mineralized, and were rimmed by osteoblasts. After 6 weeks of retention, the trabeculae thickened and consisted of a mixture of lamellar and woven bone. In conclusion, the distraction force creates a pool of undifferentiated mesenchyme-like cells with osteogenic potential and triggers capillary formation, a clear zonation can be observed during active lengthening, and new bone trabeculae begin to form between 5 and 10 days after distraction, soon become aligned with osteoblasts, and continue to grow as long as distraction force is applied. This characterization may help in any exogenous involvement with growth factors to improve bone quality.  相似文献   

9.
Distraction osteogenesis is a useful technique aimed at inducing bone formation in widespread clinical applications. One of the most important factors that conditions the success of bone regeneration is the distraction rate. Since the mechanical environment around the osteotomy site is one of the main factors that affects both quantity and quality of the regenerated bone, we have focused on analyzing how the distraction rate influences on the mechanical conditions and tissue regeneration. Therefore, the aim of the present work is to explore the potential of a mathematical algorithm to simulate clinically observed distraction rate related phenomena that occur during distraction osteogenesis. Improvements have been performed on a previous model (Gómez-Benito et al. in J Theor Biol 235:105–119, 2005) in order to take into account the load history. The results obtained concur with experimental findings: a slow distraction rate results in premature bony union, whereas a fast rate results in a fibrous union. Tension forces in the interfragmentary gap tissue have also been estimated and successfully compared with experimental measurements.  相似文献   

10.
Distraction osteogenesis (DO) is a well established surgical technique that generates new bone by gradual distraction of two bony segments. In this study, we investigated the temporal and spatial profile of FGF 1, 2 and 18, IGF 1 and 2, and TGFbeta1 during distraction osteogenesis using immunohistochemistry. An osteotomy was performed on the right tibia of 13 white male New Zealand rabbits. After a delay of 7 days, distraction was started at a rate of 0.25 mm/12 hrs for 3 weeks which was followed by a 3 week period of consolidation. Immunohistochemical analysis was performed on a weekly interval to determine the expression of the growth factors. Staining of all growth factors was apparent at various levels in the centre and callus region in fibroblasts and chondrocyte cells. FGF2 however, showed continued high expression in osteoblasts. Within two weeks after the end of distraction all growth factors showed a reduction in expression except for FGF18 which maintained high levels of expression (up to 100% staining) throughout the distraction and consolidation phases. The study suggests that in comparison to the other investigated growth factors, FGF18 may play in important role throughout the entire process of distraction osteogenesis.  相似文献   

11.
Craniofacial distraction osteogenesis: a review of 3278 cases   总被引:16,自引:0,他引:16  
The nascent field of craniofacial distraction osteogenesis has not yet been subjected to a rigorous evaluation of techniques and outcomes. Consequently, many of the standard approaches to distraction have been borrowed from the experience with long bones in orthopedic surgery. The ideal "latency period" of neutral fixation, rate and rhythm of distraction, and consolidation period have not yet been determined for the human facial skeleton. In addition, because the individual craniofacial surgeon's experience with distraction has generally been small, outcomes and meaningful complication rates have not yet been published.In this study, a four-page questionnaire was sent to 2476 craniofacial and oral/maxillofacial surgeons throughout the world, asking about their experiences with distraction osteogenesis. Information about the types of cases, indications for surgery, surgical techniques, postoperative management, outcomes, and complications were tabulated. Of 274 respondents (response rate, 11.4 percent), 148 indicated that they used distraction in their surgical practice. One hundred forty-five completed surveys were entered into a database that provided information about 3278 craniofacial distraction cases. Statistical analyses were performed comparing the rates of premature consolidation, fibrous nonunion, and nerve injury, on the basis of the use of a latency period and different rates and rhythms of distraction. In addition, the rates of all complications were determined and compared on the basis of the number of distraction cases performed per surgeon.The results of the study clearly show a wide variation in the surgical practice of craniofacial distraction osteogenesis. Although the cumulative complication rate was found to be 35.6 percent, there is a pronounced learning curve, with far fewer complications occurring among more experienced surgeons (p < 0.001). The presence of inferior alveolar nerve injury as a result of mandibular distraction was much lower for respondents whose distraction regimens consisted of no more than 1 mm of distraction per day (19.5 percent versus 2.4 percent; p < 0.001). No evidence was found to support the use of a latency period or to divide the daily distraction regimen into more than one session per day. Conclusions could not be drawn from this study regarding the length of the consolidation period. Overall, the surgeon-reported outcomes are comparable with those published for other craniofacial procedures, despite the higher incidence of complications.Although conclusions made on the basis of a subjective questionnaire need to be interpreted cautiously, this study has strength in the large numbers of cases reviewed. Because of the anonymity of responses, it has been assumed that surgeons who responded to the survey reported accurate numbers of complications and successful outcomes. Finally, additional clinical and animal studies that will be of benefit in advancing the field of craniofacial distraction osteogenesis are outlined.  相似文献   

12.
While the surgical procedure of distraction osteogenesis (DO) is very successful in the treatment of orthopedic conditions, its major limitation of slow bone formation in the distracted gap has prompted numerous attempts to understand and accelerate this slow bone formation. Interestingly, WNT/FZD signaling has been identified as a critical pathway in mediating bone formation and regeneration but has not yet been studied in the context of DO. The objective of this study was to determine the spatial and temporal localization of endogenous WNT signaling proteins at various times of bone formation in a wild-type mouse model of DO. In this study, the DO protocol performed on mice consisted of three phases: latency (5 days), distraction (12 days), and consolidation (34 days). Our immunohistochemical findings of distracted bone specimens show an increased expression of WNT ligands (WNT4 and WNT10A), receptors (FZD1 and 2, LRP5 and 6), β-catenin, and pathway antagonizers (DKK1; CTBP1 and 2; sFRP1, 2, and 4) during the distraction phase, which were then down-regulated during consolidation. This is the first published report to show an activation of the WNT pathway in DO and could help identify WNT as a potential therapeutic target in accelerating bone regeneration during DO.  相似文献   

13.
In tensional studies of bone fragments during limb lengthening, it is usually assumed that the stress level in the gap tissue before each distraction step (pre-traction stress) is rather modest. However, during the process of distraction osteogenesis, a large interfragmentary gap is generated and these pre-traction stresses may be important. To date, to the authors’ knowledge, no computational study has been developed to assess the effect of stress accumulation during limb lengthening. In this work, we present a macroscopic growth mixture formulation to investigate the influence of pre-traction stresses on the outcome of this clinical procedure. In particular, the model is applied to the simulation of the regeneration of tibial defects by means of distraction osteogenesis. The evolution of pre-traction forces, post-traction forces and peak forces is evaluated and compared with experimental data. The results show that the inclusion of pre-traction stresses in the model affects the evolution of the regeneration process and the corresponding reaction forces.  相似文献   

14.
In summary, distraction osteogenesis is a safe and effective means of achieving bone lengthening. These techniques were originally applied to the long bones of the extremities; over the past 10 years they have been effectively applied to the bones of the craniofacial skeleton. The new bone regenerate that is observed after distraction osteogenesis is stable, and relapse rates after skeletal advancement are believed to be lower than with conventional osteotomy and bone graft techniques. There is considerable variability in distraction protocols employed in clinical practice, including differences in the types of devices used and in the rate, rhythm, latency, and period of consolidation for distraction osteogenesis. The greatest application for distraction osteogenesis in the craniofacial skeleton has been with mandible lengthening, for which there is presently a 10-year clinical experience. Midfacial advancement is a newer application of distraction osteogenesis, for which clinical experience has been accrued over the past 5 years. This latter experience indicates that distraction osteogenesis is a viable treatment option for lengthening of the hypoplastic mandible and midface. These techniques have advantages over conventional means of bone graft and rigid fixation because of the quality of the bone regenerate, the decrease in the long-term relapse rate of the advanced bone segments in both the mandible and the midface, and the simultaneous soft-tissue elongation that accompanies the distraction process. Distraction osteogenesis is particularly applicable to the correction of severe deformities of the mandible and midface in children with developmental hypoplasia and syndromic craniosynostosis. However, growth is an added variable in this patient population. The amount of overcorrection in lengthening of the hypoplastic bone required to compensate for continued growth discrepancy of the adjacent facial bones is difficult to predict. Therefore, the families of these patients should be informed that many children will require repeated operations at a later age as they reach skeletal maturity.  相似文献   

15.
Transverse palatal distraction is a biological process of regenerating new bone and enveloping soft tissues in the maxillary palate region. This technique is similar to Osteo-distraction (OD) procedure for bone lengthening in which gradual and controlled traction forces are applied on the osteotomy gaps to produce new bone in between the surgically separated bone segments. This review describes the different phases after osteotomy and the biological process involved during the new bone and soft tissue formation. The mechanical environment formed in the distraction area is due to the traction forces by the distractor appliance. This environment stimulates differentiation of pluripotent cells, neovascularization, osteogenesis and remodeling of newly formed bone. The role of different pro-inflammatory cytokines, interleukins, bone morphogenic proteins, transforming growth factors, fibroblast growth factors-2) and extracellular matrix proteins (osteonectin, osteopontin) during the distraction phases has been described in detail. Also, an important note on the nutritional aspect during Osteo-distraction will benefit the clinicians to guide their patients after osteotomy throughout the distraction process.  相似文献   

16.
Initial clinical experience with distraction osteogenesis has demonstrated the risk of developing postdistraction malocclusion that requires secondary orthodontic correction. In addition, optimal mandibular form is not always achieved. Both animal studies and preliminary clinical investigations have suggested that the regenerate can be successfully "molded" during active mandibular distraction. The authors have applied this concept clinically to obtain a more desirable occlusal relationship in a group of mandibular distraction patients. Eleven patients are described in whom angulation of the distraction device or intermaxillary/interdental elastics were employed to mold the regenerate. Two representative case studies are provided to illustrate the principles. When using elastic traction to close an anterior open bite, care must be taken that extrusion of individual teeth is minimized by distributing the force over the entire dental arch, especially the basilar portions of the jaws. The authors demonstrate that molding of the regenerate can be successfully accomplished not only during device activation but also early in the consolidation period. The outer limit of the time window in which molding is effective remains to be defined.  相似文献   

17.
We present a newly developed torsional stiffness measurement device with the potential to quantitatively assess the in vivo torsional stiffness of bone regenerate during distraction osteogenesis. We describe the form and function of this device and its application in a model of regenerate consolidation. The device was able to produce data to assess stiffness of the regenerate with an accuracy between +/- 3 and +/- 9% for material stiffness ranging between 0.1 and 2.4 Nm/o and with a precision of +/- 3.6%. This method provides advantages over similar methods of bone fracture healing assessment with guaranteed maintenance of bone axis, minimized risk of bone misalignment during the bone healing process and a close relation to the functional loading pattern in torsion of bones such as tibia and femora.  相似文献   

18.
Distraction osteogenesis is a technique for skeletal lengthening that exploits the body's innate capacity for bone formation in response to tension forces on the repair callus. The authors developed a distraction osteogenesis model with a semiburied device in the Yucatan minipig mandible because of similarities between human and porcine mandibular anatomy, temporomandibular function, chewing patterns, and bone turnover rates. The purpose of this study was to measure histomorphometric bone fill after different latency periods, rates of distraction, and duration of neutral fixation in the minipig mandible. In addition, the relationship between histomorphometric bone fill and clinical stability was investigated. Mandibular osteotomies in 20 female Yucatan minipigs weighing 25 to 30 kg were distracted with modified semiburied distraction devices. Variables included 0-day or 4-day latency; 1-mm, 2-mm, or 4-mm daily distraction rates; gap size of 7 or 12 mm; and evaluation after neutral fixation for various lengths of time. Specimens were fixed in 2% paraformaldehyde, pH 7.4, before being embedded in methylmethacrylate. Sections were prepared from the region just below the inferior alveolar canal. The area of new bone formation within the gap was measured and expressed as a percentage of the total area of the distraction gap. Bone fill ranged from 0 to 100 percent. A pilot study with 7-mm advancements showed similar bone fill with 0-day or 4-day latency, but with poor reproducibility. Mandibles that were distracted to 12 mm at 1 mm per day exhibited nearly complete bone fill, either with 0-day latency (average, 93 percent) or 4-day latency (average, 100 percent). Mandibles that had been distracted for 3 days at 4 mm per day showed moderate osteogenesis and clinical stability with increasing time of neutral fixation. Bone fill was significantly correlated with clinical stability (Spearman r = 0.801, p = 0.001). Histological examination showed exuberant periosteal osteogenesis in distracted mandibles, even in those that showed poor bone fill and clinical stability. Thus, the periosteum appears to be a major source of new bone formation. These results show that osteogenesis was nearly complete with 1 mm per day and 0-day or 4-day latency. These results are consistent with the authors' previously reported clinical and radiographic observations that a latency period is not necessary for successful healing of the mandibular distraction osteogenesis wound.  相似文献   

19.
Callus distraction has become an accepted treatment procedure to lengthen hypoplastic mandibles in humans. For this purpose, extraoral and intraoral devices have been applied successfully. The effects of the distraction vector, distractor stability, and rate and frequency of callus distraction on the regenerating tissues have been examined in various studies. In an experimental animal trial on pigs (n = 12), a newly developed microhydraulic osteodistractor was tested. The animals were evenly assigned to two groups to perform a continuous and noncontinuous osteodistraction of the mandible. Initially, the forces necessary to distract the pig mandibles were recorded from a noncontinuous distraction procedure; the results were then used to perform continuous bone distraction. Besides testing the new distractor, the study proved that in continuous osteodistraction, intramembranous bone regeneration occurred, whereas in noncontinuous osteodistraction the bone regeneration process followed a chondroid ossification. In continuous osteodistraction, the bone regeneration proceeded at a higher speed with the lower distraction forces compared with noncontinuous distraction, thereby reducing the consolidation period. Clinical and microscopical results are presented.  相似文献   

20.

Objectives

To investigate the mechanism of mechanical stimulation in bone formation and regeneration during distraction osteogenesis.

Materials and methods

In this study, microarray technology was used to investigate the time course of bone‐related molecular changes in distraction osteogenesis in rats. Real‐time PCR and Western‐blot analyses were used to confirm the expression of genes identified in microarrays. Meanwhile, we used a lentivirus vector to inhibit Fak expression, in order to identify the osteogenic effect of Fak and Fak‐Mapk pathway during distraction osteogenesis.

Results

Several components of the Wnt and Hippo pathways were found to be up‐ or down‐regulated during distraction osteogenesis by microarray. Meanwhile, it was found that Fak, Src, Raf‐1, Erk1, Jnk and p38‐Mapk were up‐regulated during gradual distraction, compared with consolidation. To further determine whether Fak‐Mapk pathway played an important role in distraction osteogenesis, Fak was disrupted with a lentivirus vector. The expressions levels of p‐Fak, p‐Erk1/2, p‐JNK and p‐p38Mapk were decreased. Meanwhile, a poor early and late osteogenesis effect was found in the shRNA‐Fak group.

Conclusion

It was inferred that the mechanical stimulus induces increased expression of Fak and activates Fak‐Mapk pathway, by activation of Erk, Jnk and p38‐Mapk pathway, and that Fak at least, in part, plays an important role in maintaining osteogenic effect by activating Fak‐Mapk pathway during distraction osteogenesis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号