首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
兴安落叶松是我国的主要用材林,由于传统上对木材的长期依赖,使得其资源受到破坏,年龄结构发生改变,成过熟的原始林日渐减少,绝大部分是次生的幼中龄林。因此,研究其幼中龄林的生物量及碳汇功能很重要。森林生物量与森林生态系统的固碳能力密切相关,生物量与碳储量的多少直接影响到森林生态系统的功能,因而生物量与碳储量问题成为不同尺度生态学研究的热点。以我国大兴安岭兴安落叶松林为研究对象,通过样地调查,并结合我国森林资源清查资料对内蒙古大兴安岭地区兴安落叶松林的幼中龄林的生物量转换因子(BEF)、生物量及碳储量、碳密度、碳汇功能等进行了估算。通过实测数据及模型分析,得出以下基本结论:研究对象的BEF在0.4557与0.6988之间变动,平均值为0.5332。干、皮、枝、叶各组分生物量的分配比为:68.74:14.86:10.54:5.86。分别树干、树皮、枝、叶等组分,对其生物量与蓄积量的关系进行了拟合,建立了多组分生物量蓄积量的相关模型,分别是:干:y=0.4683x-11.291;皮:y=0.0472x+3.5674;枝:y=0.0415x+1.6787;叶:y=0.0197x+1.3405,均有很好的线性关系。地上生物量随蓄积量的增加而增加,其线性关系为:B=0.5767V-4.7042。利用近期清查数据,按材积源生物量法推算总生物量为9.49×107t,按0.5097的含碳率计算,得出兴安落叶松林幼中龄林总的碳储量为4.84×107t,碳密度为19.616 t/hm2。通过两期数据对比分析,5a间所研究林分的碳储量增加0.89×10t,碳密度增加0.404 t/hm2,说明其发挥着一定的碳汇作用。尽管近年来大兴安岭兴安落叶松林表现出了明显的碳汇功能,但整体上碳固定能力还不强,碳密度低于我国平均森林碳密度。应通过科学经营,挖掘潜力,使大兴安岭地区的森林生态系统在全球碳循环中发挥更大的作用。  相似文献   

2.
兴安落叶松天然林生物量及生产力的研究   总被引:14,自引:3,他引:14       下载免费PDF全文
 依据生物量标准木237株、解析木814株以及355块标准地实测材料对内蒙古大兴安岭林区三个气候区兴安落叶松天然幼、中龄林的生物量和净初级生产力进行了分析比较。结果表明,兴安落叶松天然林的生物产量明显受热量带的影响。残差分析证实了VAR模型lnW =lna+blnD+cD或lnW=lna+bln D2H+CD2H在估测兴安落叶松天然林生物量方面的应用价值,该模型对相对生长率随D或D2H呈线性变化的情况更为适合。本文还给出了各气候区适宜的林分密度和叶面积指数范围。  相似文献   

3.
兴安落叶松(Larix gmelinii)林林窗分布规律的小波分析研究   总被引:14,自引:10,他引:4  
采用小波分析的方法对黑龙江省大兴安岭兴安落叶松林的林窗分布进行分析,研究结果表明:兴安落叶松林样带内计算林窗分布百分率小波变换的最佳尺度为10m 。林窗分布的疏密变化尺度为20m 左右,在样地中20×20m 2的小区域内具有较为稳定的分布特点。在样带中林窗分布呈斑块状,且斑块分布随样带的海拔的升高呈间断性分布。小波分析被证明是植被空间格局研究的简捷可靠的新方法。  相似文献   

4.
大兴安岭兴安落叶松(Larix gmelinii)天然林分级木转换特征   总被引:3,自引:0,他引:3  
通过调查样地,作树干解析,分析了不同结构兴安落叶松天然林分级木(优势木、平均木和被压木)转换特征。研究表明:(1)不同结构的兴安落叶松天然林分级木转换年龄、方向和转换率均不同。兴安落叶松分级木转换率29.4%。分级木中,优势木、平均木和被压木转换率分别35.3%、41.2%、11.8%。分级木转换中,优势木与平均木相互转换比例较高,优势木转平均木占83.3%,平均木转优势木占85.7%;优势木向被压木转换比例仅为16.7%;被压木不能转换成优势木,只能转换成平均木,被压木中无转换占88.2%,在森林经营和抚育采伐中应考虑伐除这些被压木。(2)在林分年龄36~65a范围内,随着林分年龄增大,其转换率呈增加趋势。林分年龄30~39a、50~59a和60~69a时,其转换率分别0、33.3%和46.7%。(3)随着林分密度增加,分级木转换率呈增高趋势。当林分密度小于2500株.hm^-2时,主要于优势木与平均木间转换。当林分密度大于2500株.hm^-2时,才出现其它分级木与被压木相互转换现象。(4)不同林型分级木转换率和转换方向不同。草类-落叶松和杜香-落叶松林分级木转换率分别50%和9.5%。(5)不同水平格局林分分级木转换率不同。聚集分布和随机分布时,其转换率分别61.1%和13.3%。  相似文献   

5.
大兴安岭林区兴安落叶松人工林植被碳贮量   总被引:5,自引:0,他引:5  
Qi G  Wang QL  Wang XC  Qi L  Wang QW  Ye YJ  Dai LM 《应用生态学报》2011,22(2):273-279
通过样地调查,研究了大兴安岭林区10、12、15、26和61年生兴安落叶松人工林中乔木、草本和植被总体碳储量,并以空间代替时间的方法,探讨落叶松人工林生长过程中植被碳库贮量变化.结果表明:随林龄的增加,兴安落叶松人工林植被碳库贮量逐渐增加,61 a时达105.69 t.hm-2,碳汇作用显著;15~26 a兴安落叶松人工林的碳汇能力最强.其中,树干碳库贮量占乔木碳库总贮量的54.3%~73.9%,且随林龄增加,其碳库比率和碳密度增加;其余器官碳库比率随林龄增加而减小,碳密度则逐渐增加,直至趋于平衡或末期略有减少.大兴安岭林区兴安落叶松人工林的轮伐期以≥60 a为宜.  相似文献   

6.
大兴安岭林区兴安落叶松人工林土壤有机碳贮量   总被引:4,自引:0,他引:4  
通过样地调查,研究了大兴安岭林区10、15、26和61年生兴安落叶松人工林0~ 40cm土壤有机碳(SOC)贮量,以及原始兴安落叶松林皆伐后营造人工林过程中SOC碳源/汇的变化.结果表明:随林龄的增加,兴安落叶松人工林SOC贮量呈现先减少后增加的趋势,转折点在林龄15 ~26 a.与原始落叶松林相比,兴安落叶松人工林土壤碳库初期(10 ~26 a)表现为碳源,之后逐渐转变为碳汇,林龄61 a时SOC贮量达158.91· hm-2.兴安落叶松人工林土壤碳库的垂直分布表现为初期下层SOC贮量高于上层,26 a后上层高于下层,说明人为干扰对该地区森林土壤碳库垂直分布产生了强烈的影响.大兴安岭林区兴安落叶松人工林的主伐年龄以>60 a为宜.  相似文献   

7.
兴安落叶松(Larix gmelinii)光合能力及相关因子的种源差异   总被引:4,自引:0,他引:4  
赵晓焱  王传宽  霍宏 《生态学报》2008,28(8):3798-3807
为认识我国北方森林的优势树种--兴安落叶松(Larix gmelinii Rupr.)光合作用对环境变化的响应和适应特征,在其自然分布区内选择地理和气候差异显著的6个种源,采集种子并播植于其分布区南界的均一立地条件下26a后,测定针叶的光合能力及其相关因子,比较种源间差异及其随月份和冠层位置的变化.结果表明:最大净光合速率(Pmax)、表观光量子效率(AQY)、比叶重(LMA)和单位叶面积氮含量(Na)的种源差异显著(p<0.05),变化幅度分别为6.10~8.78 μmol CO2 · m-2 · s-1、0.0325~0.0427 μmol CO2 ·μmol-1photons、85.1~114.3 g · m-2和1.72~2.26 g · m-2.但是光补偿点(LCP)、光饱和点(LSP)、暗呼吸速率(Rd)和单位面积叶绿素含量(Chla)的种源差异不显著,平均值分别为61.2 μmol photons · m-2 · s-1、1093 μmol photons · m-2 · s-1、2.34 μmol CO2 · m-2 · s-1和0.12 g · m-2. Pmax、Chla、Na和LMA两两之间均呈极显著正相关(p<0.001).随树冠从下往上升高,Pmax、LCP、Na和LMA呈逐渐增高的趋势,这种垂直变化格局受种源的显著影响.除AQY之外,种源对光合能力及其相关因子的月份变化格局没有显著影响,多表现为7月低-8月高-9月低的变化格局.研究展示的兴安落叶松针叶的光合能力及其一些相关因子的种源间差异可能是其光合机构对种源地环境条件长期生理适应的结果.  相似文献   

8.
有关生物量碳随林分生长变化研究较多,而相关土壤有机碳储量随林分生长变化研究较少且结论争议较大。通过对二者随林分生长变化差异的比较,旨在探讨是否可以通过简单林分生长指标来判断土壤有机碳的变化规律。对兴安落叶松人工林分布区内139个样地的生物量与土壤碳动态研究结果表明:(1)林龄是指示生物量碳累积的可靠参数。兴安落叶松个体大小(胸径、树高和单株生物量)随着林龄的增大不断增加,相关性显著(P<0.001),而林分生物量密度随林龄的增大呈线性上升(R2=0.2-0.6,P<0.001)。(2)地表凋落物量与林龄表现显著的二次曲线相关,前37a上升而后开始下降。地表凋落物量与林木大小、生物量密度均相关显著(R2=0.14-0.82,P<0.001),但与树高相关性最高,显示树高变化对于评价地表枯落物生物量可能更有效。(3)林龄、林木大小和林分生物量密度均与土壤不同层碳存在相类似的相关关系。深层土壤有机碳(>40cm)与林龄显著负相关(P<0.05),表层土壤有机碳有增加趋势 (P>0.05),这使得0-40 cm与40-80 cm土壤有机碳储量比值随林龄增加而显著增加(P<0.01);与此类似,林木平均大小也与深层土壤有机碳显著负相关(P<0.05),而表层与深层有机碳储量比值随林木大小(胸径与树高)的增大也呈显著上升趋势(P<0.05);但同时考虑林木个体大小和林分密度的林分生物量密度(地上和地下),并没有发现明显的显著相关关系。这些结果说明,评价土壤有机碳变化的指标中,林龄、树高和胸径可能更优于较为复杂的生物量密度等指标。考虑到深层土壤较表层具有更长期的稳定性,这种表层与深层土壤有机碳比值的增加,意味着土壤碳有向表层积聚而深层减少的趋势,这可能使得土壤有机碳更容易受外界环境变化(如火灾等)的影响。落叶松人工林群落碳储量随林龄增加的变化规律明显,除了占主要部分的生物量碳之外,土壤碳累积值得关注,这一发现对于以固碳增汇为目标的碳汇林建设具有指导意义。  相似文献   

9.
10.
长白落叶松林龄序列上的生物量及碳储量分配规律   总被引:6,自引:0,他引:6  
巨文珍  王新杰  孙玉军 《生态学报》2011,31(4):1139-1148
由于多年来的过量采伐和重采轻育,伊春东折棱河林场人工长白落叶松林分质量普遍下降,森林生态功能严重衰退。结合对该研究地同一立地类型的人工长白落叶松林(Larix ologensis)林木各组分生物量垂直分配规律的分析,研究了其生物量在年龄序列上的分布及分配规律,为提高其林分生物量及碳储量采取相应的抚育管理措施提供一定的理论基础。结果表明,处于中龄、近熟及成熟林中的林木树干、树皮及活枝生物量所占比例受年龄影响较小,而叶生物量随林龄增大呈现明显递减变化;不同年龄长白落叶松的垂直分布规律基本一致:其树皮及树干生物量随树高增大呈现递减规律,其活枝及叶生物量主要集中分布于树冠中部,而其死枝生物量未呈现明显分布规律;长白落叶松根系生物量随着林分年龄的增大,其粗根、中根及细根所占比例呈现递减规律,而其大根所占比例随年龄的增大基本呈增大趋势。通过统计分析得出,长白落叶松生物量与林分蓄积的最优模型为:W=0.4909M+9.6624(R2=0.8893),进而估算得出:研究区域幼龄长白落叶松林分生物量为1273.72 t/hm2,碳储量为656.98 t/hm2;中龄长白落叶松林分生物量为15480.13 t/hm2,碳储量为7984.65 t/hm2;近熟、成熟龄长白落叶松林分生物量为7684.41 t/hm2,碳储量为3963.62 t/hm2。随林分结构的改善以及中龄、近熟及成熟林分的不断增加,生物量及碳储量会相应增加。  相似文献   

11.
兴安落叶松原始林年龄结构动态的研究   总被引:12,自引:0,他引:12  
对受不同程度干扰的兴安落叶松原始林年龄结构的研究表明,一代林年龄结构动态的特点是初期种群密度增大,年龄变幅加大,后期因自然稀疏而年龄变幅减小。多代林是不同世代的一代林的斑块镶嵌,上层老年世代年龄变差小,中层的中年或成年世代变差大,下层幼年世代变差亦较小。白桦与落叶松在良好立地上混生时,初期因白桦定居早,其平均年龄比落叶松大5—15年,50—70年后,落叶松的平均年龄因部分白桦死去而变得较大。  相似文献   

12.
Biomass and carbon storage of the North American deciduous forest   总被引:1,自引:0,他引:1  
Field measures of tree and shrub dimensions were used with established biomass equations in a stratified, two-stage cluster sampling design to estimate above-ground ovendry woody biomass and carbon storage of the eastern deciduous forest of North America. Biomass averaged 8.1 ± 1.4 (95% C.I.) kg/m2 and totaled 18.1 ± 3.1 (95% C.I.) gigatons. Carbon storage averaged 3.6 ± 0.6 (95% C.I.) kg/m2 and totaled 8.1 ± 1.4 (95% C.I.) gigatons. These values are lower than previous estimates commonly used in the analysis of the global carbon budget which range from 17.1 to 23.1 kg/m2 for biomass and 7.7 to 10.4 kg/m2 for carbon storage. These new estimates for the deciduous forest, together with earlier work in the boreal forest begin to reveal a pattern of overestimation of global carbon storage by vegetation in analyses of the global carbon budget. We discuss reasons for the differences between the new and earlier estimates, as well as implications for our understanding of the global carbon cycle.  相似文献   

13.
森林生物碳储量作为森林生态系统碳库的重要组成部分,在全球碳循环中发挥着重要作用。以小兴安岭7种典型林型为研究对象,通过外业样地调查与室内实验分析相结合的方法,从林分尺度对林分生物量与碳密度进行计量,分析了林分生物碳储量的空间分配格局,并对林分年固碳能力与碳汇潜力进行了探讨。结果表明:小兴安岭不同林型从幼龄林到成熟林的乔木层碳密度增长速率为:蒙古栎(Quercus mongolica)林>兴安落叶松(Larix gmelinii)林>云冷杉(Picea-Abies)林>樟子松(Pinus sylvestris var.mongolica)林>山杨(Populus davidiana)林>红松(Pinus koraiensis)林>白桦(Betula platyphylla)林。7种典型林型不同龄组(幼龄林、中龄林、近熟林和成熟林)林分生物量碳密度分别为:红松林31.4、74.7、118.4和130.2 t·hm–2;兴安落叶松林28.9、44.3、74.2和113.3 t·hm–2;樟子松林22.8、52.0、71.1和92.6 t·hm–2;云冷杉林23.1、44.1、77.6和130.3 t·hm–2;白桦林18.8、35.3、66.6和88.5 t·hm–2;蒙古栎林25.0、20.0、47.5和68.9 t·hm–2;山杨林19.8、28.7、43.7和76.6 t·hm–2。红松林、兴安落叶松林、樟子松林和蒙古栎林在幼龄林时林分年固碳量较高,其他林型在成熟林时林分年固碳量较高。7种典型林型不同龄组的林分生物量碳密度均随林龄增长而增加,但不同林型的碳汇功能存在差异,同一林型不同林龄的生物量碳密度增幅差异也较大。林分年固碳量在0.4–2.8 t·hm–2之间,碳汇能力较强、碳汇潜力较大。尤其是小兴安岭目前林分质量较差,幼龄林和中龄林所占的比重较大,具有较大的碳汇潜力。研究结果可为森林经营管理及碳汇功能评价提供参考。  相似文献   

14.
继1989年以后,1991年大兴安岭林区兴安落叶松又出现一次结实,结实率平均为63.8%,且结实的林木多出现在过火的林地上。胸径28cm以上的林木结实率可达到80%以上,而且结实量多的林木绝大部分(85%以上)是树冠稀疏的。球果多集中于树冠的中部。短枝年龄结构格局对结实具有重要影响。短枝的数量以1、2年生最多,但结实的短枝主要属于3—7年生的短枝,一次种子丰收年,需要消耗大量的短枝数量,花芽中大部分为雄花,直接用于形成球果的雌花,一般尚不足20%。开花结实成熟年龄短枝的存蓄率愈高,其结实的潜力也愈大,出现种子年的可能性也愈大。  相似文献   

15.
小兴安岭7种典型林型林分生物量碳密度与固碳能力   总被引:2,自引:0,他引:2       下载免费PDF全文
森林生物碳储量作为森林生态系统碳库的重要组成部分, 在全球碳循环中发挥着重要作用。以小兴安岭7种典型林型为研究对象, 通过外业样地调查与室内实验分析相结合的方法, 从林分尺度对林分生物量与碳密度进行计量, 分析了林分生物碳储量的空间分配格局, 并对林分年固碳能力与碳汇潜力进行了探讨。结果表明: 小兴安岭不同林型从幼龄林到成熟林的乔木层碳密度增长速率为: 蒙古栎(Quercus mongolica)林>兴安落叶松(Larix gmelinii)林>云冷杉(Picea-Abies)林>樟子松(Pinus sylvestris var. mongolica)林>山杨(Populus davidiana)林>红松(Pinus koraiensis)林>白桦(Betula platyphylla)林。7种典型林型不同龄组(幼龄林、中龄林、近熟林和成熟林)林分生物量碳密度分别为: 红松林31.4、74.7、118.4和130.2 t·hm-2; 兴安落叶松林28.9、44.3、74.2和113.3 t·hm-2; 樟子松林22.8、52.0、71.1和92.6 t·hm-2; 云冷杉林23.1、44.1、77.6和130.3 t·hm-2; 白桦林18.8、35.3、66.6和88.5 t·hm-2; 蒙古栎林25.0、20.0、47.5和68.9 t·hm-2; 山杨林19.8、28.7、43.7和76.6 t·hm-2。红松林、兴安落叶松林、樟子松林和蒙古栎林在幼龄林时林分年固碳量较高, 其他林型在成熟林时林分年固碳量较高。7种典型林型不同龄组的林分生物量碳密度均随林龄增长而增加, 但不同林型的碳汇功能存在差异, 同一林型不同林龄的生物量碳密度增幅差异也较大。林分年固碳量在0.4-2.8 t·hm-2之间, 碳汇能力较强、碳汇潜力较大。尤其是小兴安岭目前林分质量较差, 幼龄林和中龄林所占的比重较大, 具有较大的碳汇潜力。研究结果可为森林经营管理及碳汇功能评价提供参考。  相似文献   

16.
兴安落叶松林生产力模拟及其生态效益评估   总被引:7,自引:0,他引:7  
以兴安落叶松林为研究对象,基于森林资源清查资料和气候资料,建立了反映森林生物学特性(蓄积量和年龄)和气候因素(年均温和年均降水)综合作用的兴安落叶松林现实生产力模型;同时,评估了兴安落叶松林的生态系统公益,指出我国兴安落叶松林的生态系统公益总价值约为4499.8×106美元@a-1,其中生态效益(包括气候控制、土壤形成、废物处理、生物控制)的价值达2816.1×106美元@a-1,约占生态系统公益总价值的62.6%,是兴安落叶松林所创造的直接经济价值的2.56倍.社会经济价值的5.0倍.这表明全球气候变化将对兴安落松林的影响巨大,迫切需要研究全球变化下的兴安落叶松林对策.  相似文献   

17.
Biometric inventories for 25 years, from 1983 to 2005, indicated that the Jianfengling tropical mountain rain forest in Hainan, China, was either a source or a modest sink of carbon. Overall, this forest was a small carbon sink with an accumulation rate of (0.56±0.22) Mg C ha−1yr−1, integrated from the long-term measurement data of two plots (P9201 and P8302). These findings were similar to those for African and American rain forests ((0.62±0.23) Mg C ha−1yr−1). The carbon density varied between (201.43±29.38) Mg C ha−1 and (229.16±39.2) Mg C ha−1, and averaged (214.17±32.42) Mg C ha−1 for plot P9201. Plot P8302, however, varied between (223.95±45.92) Mg C ha−1 and (254.85±48.86) Mg C ha−1, and averaged (243.35±47.64) Mg C ha−1. Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.  相似文献   

18.
大兴安岭5种典型林型森林生物碳储量   总被引:6,自引:0,他引:6  
森林生态系统是陆地生态系统的重要碳库,森林生态系统的生物碳储量作为森林生态系统碳库的重要组成部分,对全球碳循环与碳平衡产生重要作用。以大兴安岭5种典型林型为研究对象,结合森林资源清查资料,采用地理信息技术(GIS),将5种林型分龄组分别对乔木层、林下的灌木层、草本层和凋落物层各组分的单位面积生物量、含碳率和生物碳储量进行测定和计量估算,并从林分水平上,采用分龄组的方法,计量估算了生物碳储量。结果表明:大兴安岭5种典型林型不同龄组的生物碳储量分别为:兴安落叶松幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为15.20、50.96、95.80t/hm2和109.33t/hm2;白桦幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为15.36、30.67、41.62t/hm2和64.35t/hm2;樟子松幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为29.89、59.92、90.01t/hm2和117.08t/hm2;蒙古栎幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为11.17、11.90、34.94t/hm2和59.49t/hm2;山杨幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为21.81、28.58、42.84t/hm2和64.39t/hm2。研究发现:5种典型林型不同龄组的森林生物碳储量均随着林龄(幼龄林、中龄林、近熟林和成熟林)的增长而增加,但不同林型的碳汇功能存在差异,同一种林型在不同林龄的生物碳储量增幅差异亦较大。尤其是大兴安岭目前林分质量比较差,幼龄林和中龄林所占的比重较大,若能对现有林分加以更好地抚育和管理,该区森林植被仍具有较大的碳汇潜力,碳汇功能将进一步增强,大兴安岭在国家的生态功能区建设中将发挥更重要的碳汇功能,对此提出了森林生态系统碳增汇管理策略与管理路径。研究结果为正确认识森林生物碳储量对区域碳平衡及生态环境的影响具有重要意义,以及在未来营林、造林活动中充分发挥人工林碳汇效应提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号