首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.

Background  

The chlamydial developmental cycle involves the alternation between the metabolically inert elementary body (EB) and the replicating reticulate body (RB). The triggers that mediate the interchange between these particle types are unknown and yet this is crucial for understanding basic Chlamydia biology.  相似文献   

2.
The effect of cyclic AMP (cAMP) on the chlamydial growth cycle was studied with Chlamydia trachomatis-infected HeLa cells. At concentrations of 1 mM, cAMP had a profound effect on the chlamydial developmental cycle, resulting in small, immature inclusions. Immunoblot analysis revealed the absence of elementary body (EB)-specific antigens in the cAMP-treated cells. This effect was observed only if cAMP was added within the first 12 h of incubation and continued thereafter. Its withdrawal at any time from the medium led to the reappearance of fully mature, infectious organisms. Analogs or breakdown products of cAMP exerted no inhibitory effect on chlamydial development. Intracellular inclusions from the cAMP-treated cells were unable to infect fresh HeLa monolayers, in contrast to the completely infectious nontreated inclusions. Protein profiles of the cAMP-treated organisms (at any time point) resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis very closely resembled reticulate bodies (RB) and did not possess characteristic EB-binding proteins. Collectively, these observations suggest an inhibitory role for cAMP at the RB stage of intracellular development. We also identified a cAMP receptor protein which is associated with RB and not with EB, further supporting a role for this system in the developmental regulation of chlamydiae.  相似文献   

3.
The effects of polymixin B sulfate on cell walls of mature elementary body (EB) and of immature developmental reticulate body (RB) of Chlamydia psittaci were investigated. When purified EB were treated with polymixin (10(4) units per ml or more) at 37 C for 60 min, about 70% of EB was found to be covered with a number of projections. Further incubation did not increase the percentage affected. The infectivity after treatment as assayed by the inclusion counting technique was reduced by 70% of the original titer. These results suggest that EB with the projections are no longer infective. The projections had obscure outlines and were 20 to 40 nm in diameter when seen in thin sections. In the negatively stained preparations, the projections were composed of aggregations of fine particles 4 to 5 nm in diameter. Treatment with sodium dodecyl sulfate at the same concentration used for cell wall isolation removed the projections completely, and the cell walls were converted to rather ragged forms apparently composed of outside and inside layers. When RB cell walls prepared from infected cells at 18 hr after infection were treated with polymixin at the same concentration, the projections having the same morphology with those seen on treated EB cell walls were observed only on the inside surface of cell wall.  相似文献   

4.
5.
Chlamydia trachomatis is an obligate intracellular pathogen responsible for ocular and genital infections of significant public health importance. C. trachomatis undergoes a biphasic developmental cycle alternating between two distinct forms: the infectious elementary body (EB), and the replicative but non-infectious reticulate body (RB). The molecular basis for these developmental transitions and the metabolic properties of the EB and RB forms are poorly understood as these bacteria have traditionally been difficult to manipulate through classical genetic approaches. Using two-dimensional liquid chromatography - tandem mass spectrometry (LC/LC-MS/MS) we performed a large-scale, label-free quantitative proteomic analysis of C. trachomatis LGV-L2 EB and RB forms. Additionally, we carried out LC-MS/MS to analyse the membranes of the pathogen-containing vacuole ('inclusion'). We developed a label-free quantification approaches to measure protein abundance in a mixed-proteome background which we applied for EB and RB quantitative analysis. In this manner, we catalogued the relative distribution of > 54% of the predicted proteins in the C. trachomatis LGV-L2 proteome. Proteins required for central metabolism and glucose catabolism were predominant in the EB, whereas proteins associated with protein synthesis, ATP generation and nutrient transport were more abundant in the RB. These findings suggest that the EB is primed for a burst in metabolic activity upon entry, whereas the RB form is geared towards nutrient utilization, a rapid increase in cellular mass, and securing the resources for an impending transition back to the EB form. The most revealing difference between the two forms was the relative deficiency of cytoplasmic factors required for efficient type III secretion (T3S) in the RB stage at 18 h post infection, suggesting a reduced T3S capacity or a low frequency of active T3S apparatus assembled on a 'per organism' basis. Our results show that EB and RB proteomes are streamlined to fulfil their predicted biological functions: maximum infectivity for EBs and replicative capacity for RBs.  相似文献   

6.
7.
Developmental-stage-specific plasmid supercoiling in Chlamydia trachomatis   总被引:2,自引:1,他引:1  
Chlamydia trachomatis elementary body (EB) and reticulate body (RB) developmental stages have polymorphic plasmid DNA. Several plasmid forms separated by gel electrophoresis were identified as topoisomers by treatment with topoisomerase I. Among these topoisomers was one form unique to EBs and one form unique to RBs. The unique EB plasmid topoisomer was characterized as highly supercoiled, on the basis of band migrations by gel electrophoresis and its appearance by electron microscopy. The unusual physical state of this topoisomer was probably mediated, in part, by DNA-specific structural proteins. The unique RB plasmid topoisomer was a supercoiled form of lower superhelical density than the other identified topoisomers. Developmental-stage-specific differences in super-helical density of plasmid DNA suggest cause-and-effect relationships between DNA topology and metabolic activity in RBs and metabolic quiescence in EBs.  相似文献   

8.
9.
The morphology of membrane-bound intracellular inclusions, or 'cysts', of epitheliocystis from sea bream Sparus aurata is described. Inclusions under the light microscope appear either granular or amorphous. Granular inclusions do not elicit a proliferative host reaction and contain the 3 distinctive developmental stages of chlamydial organisms: the highly pleomorphic reproductive form or reticulate body, the condensing form or intermediate body and the infective non-dividing rather uniform elementary body. Amorphous inclusions may elicit a proliferative host reaction and contain prokaryotic organisms which differ morphologically from those reported within granular cysts. More or less elongated electron-lucent organisms divide by fission to give rise to electron-dense non-dividing small cells with a dense nucleoid. Vacuolated and non-vacuolated small cells are reported. The morphology and developmental cycle of sea bream epitheliocystis agents would support their chlamydial nature; however, the immunohistochemical study conducted on gill samples which carried both inclusions failed to demonstrate the expression of lipopolysaccharide (LPS) chlamydial antigen. The different stages of the 2 distinct developmental cycles described in the present study are compared with electron microscope observations of epitheliocystis organisms reported from different host species. The hypothesis that epitheliocystis infection in the sea bream might be caused by a unique highly pleomorphic chlamydia-like agent, the life history of which includes 2 entirely different developmental cycles, is discussed.  相似文献   

10.
Two different antigens of serotype 1 Chlamydia psittaci were localized using three immunoelectron microscopy techniques: non-embedding, pre-embedding and post-embedding. The antigens had previously been described as being of potential use in diagnosis (80–90 kDa protein region) and vaccine development (110 kDa protein). The results show a direct relationship between the protective capacity of the antigens and their surface localization on the elementary bodies, which are the infectious form of Chlamydia. The 80–90 kDa protein region is located on the surface of reticulate bodies but not of elementary bodies, where it was located periplasmically, while the 110 kDa protein occurs on the surface of both elementary and reticulate bodies.  相似文献   

11.
Chlamydophila pneumoniae is a gram-negative obligate intracellular bacterial pathogen that causes pneumonia and bronchitis and may contribute to atherosclerosis. The developmental cycle of C. pneumoniae includes a morphological transition from an infectious extracellular elementary body (EB) to a noninfectious intracellular reticulate body (RB) that divides by binary fission. The C. pneumoniae genome encodes a type III secretion (T3S) apparatus that may be used to infect eukaryotic cells and to evade the host immune response. In the present study, Cpn0712 (CdsD), Cpn0704 (CdsQ), and Cpn0826 (CdsL), three C. pneumoniae genes encoding yersiniae T3S YscD, YscQ, and YscL homologs, respectively, were cloned and expressed as histidine- and glutathione S-transferase (GST)-tagged proteins in Escherichia coli. Purified recombinant proteins were used to raise hyper-immune polyclonal antiserum and were used in GST pull-down and copurification assays to identify protein-protein interactions. CdsD was detected in both EB and RB lysates by Western blot analyses, and immunofluorescent staining demonstrated the presence of CdsD within inclusions. Triton X-114 solubilization and phase separation of chlamydial EB proteins indicated that CdsD partitions with cytoplasmic proteins, suggesting it is not an integral membrane protein. GST pull-down assays indicated that recombinant CdsD interacts with CdsQ and CdsL, and copurification assays with chlamydial lysates confirmed that native CdsD interacts with CdsQ and CdsL. To the best of our knowledge, this is the first report demonstrating interactions between YscD, YscQ, and YscL homologs of bacterial T3S systems. These novel protein interactions may play important roles in the assembly or function of the chlamydial T3S apparatus.  相似文献   

12.
13.
The mechanistic details of the pathogenesis of Chlamydia, an obligate intracellular pathogen of global importance, have eluded scientists due to the scarcity of traditional molecular genetic tools to investigate this organism. Here we report a chemical biology strategy that has uncovered the first essential protease for this organism. Identification and application of a unique CtHtrA inhibitor (JO146) to cultures of Chlamydia resulted in a complete loss of viable elementary body formation. JO146 treatment during the replicative phase of development resulted in a loss of Chlamydia cell morphology, diminishing inclusion size, and ultimate loss of inclusions from the host cells. This completely prevented the formation of viable Chlamydia elementary bodies. In addition to its effect on the human Chlamydia trachomatis strain, JO146 inhibited the viability of the mouse strain, Chlamydia muridarum, both in vitro and in vivo. Thus, we report a chemical biology approach to establish an essential role for Chlamydia CtHtrA. The function of CtHtrA for Chlamydia appears to be essential for maintenance of cell morphology during replicative the phase and these findings provide proof of concept that proteases can be targeted for antimicrobial therapy for intracellular pathogens.  相似文献   

14.
Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB) is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB). Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of β-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active β-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP). As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome function by complementation.  相似文献   

15.
Chlamydia spp. exhibit a unique biphasic developmental cycle whereby infectious elementary bodies (EBs) invade host epithelial cells and differentiate into noninfectious, metabolically active reticulate bodies (RBs). EBs posses a unique outer envelope where rigidity is achieved by disulfide bonding among cysteine-rich envelope-associated proteins. Conversely, these disulfide bonds become reduced in RBs to accommodate vegetative growth, thereby linking the redox status of cysteine-rich envelope proteins with progression of the developmental cycle. We investigated the potential role of disulfide bonding within the chlamydial type III secretion system (T3SS), since activity of this system is also closely linked to development. We focused on structural components of the T3S apparatus that contain an unusually high number of cysteine residues compared to orthologs in other secretion systems. Nonreducing SDS-PAGE revealed that EB-localized apparatus proteins such as CdsF, CdsD, and CdsC form higher-order complexes mediated by disulfide bonding. The most dramatic alterations were detected for the needle protein CdsF. Significantly, disulfide bonding patterns shifted during differentiation of developmental forms and were completely reduced in RBs. Furthermore, at later time points during infection following RB to EB conversion, we found that CdsF is reoxidized into higher-order complexes. Overall, we conclude that the redox status of specific T3SS apparatus proteins is intimately linked to the developmental cycle and constitutes a newly appreciated aspect of functionally significant alterations within proteins of the chlamydial envelope.  相似文献   

16.
The effects of omission of individual amino acids from growth medium on the differentiation of Chlamydia trachomatis DK-20 (serotype E) during infection of cycloheximide-treated McCoy cells are described. As judged by inclusion body staining with acridine orange, omission of cysteine from the medium severely retarded differentiation of reproductive reticulate body (RB) to infective elementary body (EB) forms. The effect appeared specific to cysteine in that omission of other amino acids had little or no effect on differentiation once RBs appeared. On restoration of cysteine, culture infectivity increased and inclusions contained organisms which, by cytochemical and morphological criteria, were differentiating to infective forms, indicating that cysteine deprivation did not irreversibly inhibit differentiation. Impairment of RB to EB differentiation in cysteine-less medium was also observed for three strains of Chlamydia psittaci and 10 other strains of C. trachomatis. It is suggested that the effect arises via the biosynthetic requirement for cysteine for provision of three cysteine-rich proteins, whose synthesis and insertion into the outer membrane have previously been shown to accompany RB to EB differentiation of C. psittaci 6BC and C. trachomatis 434 (serotype L2). Synthesis of cysteine-rich outer membrane proteins during differentiation may thus be common to all chlamydiae.  相似文献   

17.
Electron microscopic observations were carried out to confirm the presence of surface projections on Chlamydia psittaci reticulate bodies (RBs). The morphology of the projections on RBs was identical with that on elementary bodies (EBs); one end of each projection was connected with the cytoplasmic membrane, but the other end of the projection protruded beyond the cell wall through a fine hole or rosette in the cell wall. The results demonstrated that the rosettes seen in RB cell walls were morphological markers indicating the presence of the surface projections. A statistical anaylsis of the number of projections on EBs and the number of rosettes in RB cell walls prepared at 10, 15, and 20 h after infection demonstrated that all RBs had the projections and that the number of projections was maximal by 10 h after infection and then decreased gradually to approximately the same number of projections on EBs.  相似文献   

18.
The sensitivity and specificity of the polymerase chain reaction (PCR) test kit, AMPLICOR Chlamydia trachomatis, were examined by the use of purified elementary bodies (EBs), cells having inclusions containing reticulate bodies alone and 20 clinical isolates. The numbers of EB and inclusion of C. trachomatis at the detection limit were determined to be approximately 2 to 4 EBs and one inclusion per assay, respectively. No reaction occurred for C. psittaci and C. pneumoniae. All clinical isolates were positively reacted in the PCR assay.  相似文献   

19.
The precise strategies that intracellular pathogens use to exit host cells have a direct impact on their ability to disseminate within a host, transmit to new hosts, and engage or avoid immune responses. The obligate intracellular bacterium Chlamydia trachomatis exits the host cell by two distinct exit strategies, lysis and extrusion. The defining characteristics of extrusions, and advantages gained by Chlamydia within this unique double‐membrane structure, are not well understood. Here, we define extrusions as being largely devoid of host organelles, comprised mostly of Chlamydia elementary bodies, and containing phosphatidylserine on the outer surface of the extrusion membrane. Extrusions also served as transient, intracellular‐like niches for enhanced Chlamydia survival outside the host cell. In addition to enhanced extracellular survival, we report the key discovery that chlamydial extrusions are phagocytosed by primary bone marrow‐derived macrophages, after which they provide a protective microenvironment for Chlamydia. Extrusion‐derived Chlamydia staved off macrophage‐based killing and culminated in the release of infectious elementary bodies from the macrophage. Based on these findings, we propose a model in which C. trachomatis extrusions serve as “trojan horses” for bacteria, by exploiting macrophages as vehicles for dissemination, immune evasion, and potentially transmission.  相似文献   

20.
The cell surfaces of two Chlamydia trachomatis serovars were explored by immune electron microscopy with monoclonal antibodies that recognize a number of chlamydial outer-membrane components. Species, subspecies and serovar-reactive epitopes on the major outer-membrane protein (MOMP) of a lymphogranuloma venereum biovar strain, L2/434/Bu, and a trachoma biovar strain, F/UW-6/Cx, were exposed on the surfaces of both elementary bodies (EBs) and reticulate bodies (RBs). Three epitopes on MOMP were inaccessible on EBs and RBs of both strains. These included a genus-reactive, species-reactive, and a subspecies-reactive epitope. In contrast, genus-specific epitopes on lipopolysaccharide (LPS) were not detected on the EB surface, but were clearly expressed on RBs of both L2/434/Bu and F/UW-6/Cx chlamydiae. Antibodies specific for the 60 kDa and 12 kDa 'cysteine-rich' outer-membrane proteins did not react with surface epitopes on either EBs or RBs. These data provide evidence that MOMP is a major surface antigen of both morphological forms, whereas some portions of the LPS molecule are exposed on the RB surface but become inaccessible to antibody after conversion to the infectious EB form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号