首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
UV-B辐射强对紫露草花粉母细胞的微核效应   总被引:2,自引:0,他引:2  
臭氧层减薄引起紫外辐射的增强,紫露草三号用来监测辐射增加的潜在危害。在田间太阳光照下,把带有花序的紫露草枝条再给予8h不同UV-B剂量的照射,及用8μW/cm2的UV-B分别照射2、4、6和8h四种不同处理。处理后镜检花粉母细胞的微核发生情况。结果表明,UV-B照射处理花粉母细胞后其微核率显著增加。紫露草花粉母细胞的微核率可用作监测环境UV-B辐射增强的可靠指标。  相似文献   

2.
赵华  伍丹 《微生物学通报》2009,36(6):0826-0830
研究UV-B诱导的酵母凋亡现象及调节机制的作用。通过高密度细胞培养, UV-B能够抑制酵母细胞生长和诱导细胞凋亡。然而, 将UV-B已照射96 h活酵母细胞重新进行UV-B照射时发现, 培养12 d照射过细胞的存活率仍有10% (P<0.05), 而未照射细胞已经基本死亡。同时, 经0.01 mol/L和0.1 mol/L H2O2处理, UV-B照射24 h活细胞的存活率分别是对照的3.0倍和5.2倍; 而经30 min和60 min 55°C热处理, UV-B照射24 h活细胞的存活率分别是对照的3.5倍和9.0倍。  相似文献   

3.
有害的中波紫外线(ultraviolet B,UV-B;280~320 nm)辐射影响植物的生长与发育。但也有研究证明,UV-B辐射可诱导生物碱合成。然而,UV-B辐射能否提高颠茄(Atropa belladonna L.)中托品烷类生物碱(tropane alkaloids,TAs)的含量尚未见报道。本研究以颠茄实生苗为材料,研究UV-B不同照射度强、时间(d数)对颠茄的氮代谢、生物碱含量及TAs代谢途径中的几个关键酶基因表达量的影响。结果表明,随着辐射天数的增加(5~30 d),低强度(LU,5μW/cm^2)UV-B处理与对照(无辐射)比较,硝态氮、莨菪碱、东莨菪碱含量无显著差异。然而,中等强度(MU,10μW/cm^2)和高强度(HU,15μW/cm^2)UV-B辐射,明显增加硝态氮含量,谷氨酰胺合成酶(glutamine synthetase,GS)、谷氨酸脱氢酶(glutamine dehydrogenase,GDH)活性明显高于对照。重要的是,中、高强度UV-B辐射显著降低了颠茄的叶片与茎中莨菪碱和东莨菪碱含量。荧光定量PCR揭示,莨菪碱合成的关键酶腐胺N-甲基转移酶(putrescine N-methyltransferase,PMT)编码基因、莨菪碱-6-β-羟化酶(hyoscyamine-6-β-hydroxylase,H6H)基因表达呈高度组织特异性,主要是在根部表达。与对照比较,低强度照射25 d引起pmt在根部的表达量显著上调,而中、高强度照射导致其下调;h6h在根部的相对表达量随着处理强度的增加逐渐降低;托品酮还原酶Ⅰ(tropinone reductaseⅠ,TRⅠ)编码基因在叶片中的表达量较高,随照射强度的增加而升高。上述结果表明,低强度UV-B辐射促进氮代谢,有利于莨菪碱合成;而长期中、高强度UV-B辐射,尽管促进了谷氨酸代谢,但却使pmt和h6h表达降低,不利于莨菪碱和东莨菪碱的积累。总之,本研究结果显示,不同UV-B辐射强度和时间,对颠茄合成TAs的影响不同,可为大田试验生产莨菪碱提供有益的参考。  相似文献   

4.
有害的中波紫外线(ultraviolet B,UV-B;280~320 nm)辐射影响植物的生长与发育。但也有研究证明,UV-B辐射可诱导生物碱合成。然而,UV-B辐射能否提高颠茄(Atropa belladonna L.)中托品烷类生物碱(tropane alkaloids,TAs)的含量尚未见报道。本研究以颠茄实生苗为材料,研究UV-B不同照射度强、时间(d数)对颠茄的氮代谢、生物碱含量及TAs代谢途径中的几个关键酶基因表达量的影响。结果表明,随着辐射天数的增加(5~30 d),低强度(LU,5 μW/cm2)UV-B处理与对照(无辐射)比较,硝态氮、莨菪碱、东莨菪碱含量无显著差异。然而,中等强度(MU,10 μW/cm2)和高强度(HU,15 μW/cm2)UV-B辐射,明显增加硝态氮含量,谷氨酰胺合成酶(glutamine synthetase,GS)、谷氨酸脱氢酶(glutamine dehydrogenase,GDH)活性明显高于对照。重要的是,中、高强度UV-B辐射显著降低了颠茄的叶片与茎中莨菪碱和东莨菪碱含量。荧光定量PCR揭示,莨菪碱合成的关键酶腐胺N 甲基转移酶(putrescine N methyltransferase,PMT)编码基因、莨菪碱-6-β-羟化酶(hyoscyamine-6-β-hydroxylase,H6H)基因表达呈高度组织特异性,主要是在根部表达。与对照比较,低强度照射25 d引起pmt在根部的表达量显著上调,而中、高强度照射导致其下调;h6h在根部的相对表达量随着处理强度的增加逐渐降低;托品酮还原酶Ⅰ(tropinone reductaseⅠ, TRⅠ)编码基因在叶片中的表达量较高,随照射强度的增加而升高。上述结果表明,低强度UV-B辐射促进氮代谢,有利于莨菪碱合成;而长期中、高强度UV-B辐射,尽管促进了谷氨酸代谢,但却使pmt和h6h表达降低,不利于莨菪碱和东莨菪碱的积累。总之,本研究结果显示,不同UV-B辐射强度和时间,对颠茄合成TAs的影响不同,可为大田试验生产莨菪碱提供有益的参考。  相似文献   

5.
为明确UV-B照射能否对烟蚜Myzus persicae造成氧化胁迫以及烟蚜酶促抗氧化系统在UV照射下的应答反应,本研究采用比色法,测定了UV-B照射不同时间(0、15、30和45 min)后,烟蚜体内的总抗氧化能力、丙二醛(MDA)和蛋白质羰基含量,及其体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和谷胱甘肽-S-转移酶(GST)的活性。与对照相比,UV-B照射时间为15和30 min时,烟蚜体内的总抗氧化能力、丙二醛和蛋白羰基含量显著升高,当照射时间延长至45 min时,均又恢复到对照水平。UV-B照射烟蚜15 min时,其体内CAT、POD和GST活性均显著升高;照射时间延长至30 min时,SOD活性、CAT和POD活性达到最大值,GST活性恢复到对照水平。当照射时间延长至45 min时,SOD、CAT、POD和GST的活性均恢复到对照水平。本研究表明UV-B照射对烟蚜造成氧化胁迫,使得烟蚜体内酶促抗氧化系统产生应激响应。  相似文献   

6.
以青藏高原矮嵩草草甸的主要伴随种美丽风毛菊为材料,通过滤除太阳辐射光谱中UV-B成分的模拟试验,研究了强太阳UV-B辐射对高山植物光合作用、光合色素和紫外吸收物质的影响.结果表明:与对照相比,弱UV-B处理能促使美丽风毛菊叶片净光合速率增加和提高稳态PSⅡ光化学效率;对照中叶片厚度的相对增加能弥补单位叶面积光合色素的光氧化损失,是高山植物对强UV B辐射的一种适应方式.短期滤除UV-B辐射处理时紫外吸收物质含量几乎没有变化,说明高山植物叶表皮层中该类物质受环境波动的影响较小.强UV-B环境下光合色素的相对增加是一种表象,而青藏高原强太阳UV-B辐射对高山植物美丽风毛菊的光合生理过程仍具有潜在的负影响.  相似文献   

7.
UV-B照射培养对酵母菌生理活性物质的影响   总被引:2,自引:1,他引:1  
赵华  郭建辉 《生物技术》2005,15(2):43-45
研究了UV-B照射培养过程中酵母细胞内各种生理活性物质的变化。实验结果显示,UV-B照射培养过程中,酵母细胞中RNA、蛋白质、海藻糖、麦角甾醇和葡聚糖含量均有不同程度的提高,其中RNA含量由0h的8.94%增加到72h的9.88%;蛋白质含量在72h时达到最大值,比培养初期提高0.28%;海藻糖在60h达到最高值,约为113.9mg·g-1酵母;麦角甾醇含量在84h达到最大值为15.43mg·g-1酵母;葡聚糖在72h时的含量占细胞壁干重的22.60%。而酵母细胞中谷胱甘肽的含量和超氧化物歧化酶活性则均呈下降趋势。说明UV-B照射对酵母生长产生较大影响,多种生理活性物质的含量出现不同变化。  相似文献   

8.
增强UV-B辐射和干旱对春小麦光合作用及其生长的影响   总被引:5,自引:0,他引:5  
在室外盆栽条件下研究了UV-B辐射和土壤干旱对春小麦 '和尚头'生长和光合作用的影响.结果显示:(1)干旱、UV-B辐射、干旱+UV-B(复合)处理均可使叶片类黄酮含量增加,且干旱+UV-B处理增加显著高于其他处理(P<0.05).UV-B辐射和干旱单独处理均能显著降低叶片光合色素含量,但UV-B辐射的副作用大于干旱,复合处理对光合色素的影响介于UV-B和干旱之间.(2)各处理间的光合速率日均值大小次序为:对照>UV-B+干旱>UV-B>干旱;增强UV-B对净光合速率的抑制作用大于干旱,而UV-B+干旱处理的抑制作用较二者单独处理有所减轻.(3)UV-B辐射和干旱单独处理后总生物量比对照减少15%,且抑制作用为:干旱>UV-B>复合处理; UV-B辐射和干旱胁迫不但影响春小麦的生物量,而且影响小穗特征和产量.研究表明,UV-B辐射和干旱之间存在交互作用,说明一种胁迫可以减缓(轻)另外一种胁迫对春小麦的抑制作用.  相似文献   

9.
田间增加UV-B辐射对玉米光合生理的影响   总被引:1,自引:1,他引:0  
自然条件下,分别增加0(CK组)、0.01(R1组)和0.015 J.m-2.s-1(R2组)3种强度的UV-B辐射处理玉米(Zea maysL.),对重庆地区C4植物玉米整个生长期内光合作用的影响进行研究。结果表明,增强UV-B辐射导致玉米幼苗叶片光合色素含量(包括叶绿素a、叶绿素b、总叶绿素和类胡萝卜素)、Hill反应活力、气孔导度、光合速率下降,且随UV-B辐射强度的增加,玉米幼苗光合作用所受抑制增强,而玉米成株所受影响不大。  相似文献   

10.
本方法以DNA单链断裂的检测为基础,在背景γ射线照射下进行DNA交联检测。所建方法与Kohn氏原法相比,洗脱时间大为缩短,实验所用主要材料都能立足国内。本文引入“交联度”这个参数,能同时相对定量地表示DNA总交联、DNA-蛋白质交联和DNA链间交联。此外还从DNA、蛋白质两方面确证了DNA-蛋白质交联的存在。  相似文献   

11.
Lin AC  Goh MC 《Proteins》2002,49(3):378-384
The ultrastructure of fibrous long spacing (FLS) collagen fibrils has been investigated by performing both atomic force microscopy (AFM) and transmission electron microscopy (TEM) on exactly the same area of FLS collagen fibril samples. These FLS collagen fibrils were formed in vitro from type I collagen and alpha1-acid glycoprotein (AAG) solutions. On the basis of the correlated AFM and TEM images obtained before and after negative staining, the periodic dark bands observed in TEM images along the longitudinal axis of the FLS collagen fibril correspond directly to periodic protrusions seen by AFM. This observation is in agreement with the original surmise made by Gross, Highberger, and Schmitt (Gross J, Highberger JH, Schmitt FO, Proc Natl Acad Sci USA 1954;40:679-688) that the major repeating dark bands of FLS collagen fibrils observed under TEM are thick relative to the interband region. Although these results do not refute the idea of negative stain penetration into gap regions proposed by Hodge and Petruska (Petruska JA, Hodge AJ. Aspects of protein structure. Ramachandran GN, editor. New York: Academic Press; 1963. p. 289-300), there is no need to invoke the presence of gap regions to explain the periodic dark bands observed in TEM images of FLS collagen fibrils.  相似文献   

12.
Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain‐stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low‐temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhibit strain stiffening; in general, onset of strain stiffening occurs earlier, yield strain is lower, and degree of strain stiffening is smaller in higher concentration gels and in those displaying thick fibril bundles. Recovery after exposure to high strains is substantial and similar in all gels, suggesting that much of the stiffening comes from reversible network deformations. A key finding of this study is that collagen I gels of identical storage and loss moduli may display different nonlinear responses and different capacities to recover from high strain. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Dentin collagen fibrils were studied in situ by atomic force microscopy (AFM). New data on size distribution and the axial repeat distance of hydrated and dehydrated collagen type I fibrils are presented. Polished dentin disks from third molars were partially demineralized with citric acid, leaving proteins and the collagen matrix. At this stage collagen fibrils were not resolved by AFM, but after exposure to NaOCl(aq) for 100-240 s, and presumably due to the removal of noncollagenous proteins, individual collagen fibrils and the fibril network of dentin connected to the mineralized substrate were revealed. High-aspect-ratio silicon tips in tapping mode were used to image the soft fibril network. Hydrated fibrils showed three distinct groups of diameters: 100, 91, and 83 nm and a narrow distribution of the axial repeat distance at 67 nm. Dehydration resulted in a broad distribution of the fibril diameters between 75 and 105 nm and a division of the axial repeat distance into three groups at 67, 62, and 57 nm. Subfibrillar features (4 nm) were observed on hydrated and dehydrated fibrils. The gap depth between the thick and thin repeating segments of the fibrils varied from 3 to 7 nm. Phase mode revealed mineral particles on the transition from the gap to the overlap zone of the fibrils. This method appears to be a powerful tool for the analysis of fibrillar collagen structures in calcified tissues and may aid in understanding the differences in collagen affected by chemical treatments or by diseases.  相似文献   

14.
Casati P  Walbot V 《Plant physiology》2004,136(2):3319-3332
Ultraviolet-B (UV-B) photons can cause substantial cellular damage in biomolecules, as is well established for DNA. Because RNA has the same absorption spectrum for UV as DNA, we have investigated damage to this cellular constituent. In maize (Zea mays) leaves, UV-B radiation damages ribosomes by crosslinking cytosolic ribosomal proteins S14, L23a, and L32, and chloroplast ribosomal protein L29 to RNA. Ribosomal damage accumulated during a day of UV-B exposure correlated with a progressive decrease in new protein production; however, de novo synthesis of some ribosomal proteins is increased after 6 h of UV-B exposure. After 16 h without UV-B, damaged ribosomes were eliminated and translation was restored to normal levels. Ribosomal protein S6 and an S6 kinase are phosphorylated during UV-B exposure; these modifications are associated with selective translation of some ribosomal proteins after ribosome damage in mammalian fibroblast cells and may be an adaptation in maize. Neither photosynthesis nor pigment levels were affected significantly by UV-B, demonstrating that the treatment applied is not lethal and that maize leaf physiology readily recovers.  相似文献   

15.
The photosynthetic performance of Microcystis aeruginosa FACHB 854 during the process of UV-B exposure and its subsequent recovery under photosynthetic active radiation (PAR) was investigated in the present study. Eight hours UV-B radiation (3.15 W m−2) stimulated the increase of photosynthetic pigments content at the early stage of UV-B exposure followed by a significant decline. It suggested that UV-B damage was not an immediate process, and there existed a dynamic balance between damage and adaptation in the exposed cells. Short-term UV-B exposure severely inhibited the photosynthetic capability, but it could restore quickly after being transferred to PAR. Further investigations revealed that the PS II of M. aeruginosa FACHB 854 was more sensitive to UV-B exposure than PS I, and the oxygen-evolving complex of PS II was an important damage target of UV-B. The inhibition of photosynthetic performance caused by UV-B could be recovered to 90.9% of pretreated samples after 20 h exposure at low PAR, but it could not be recovered in the dark as well as under low PAR in the presence of Chloromycetin. It can be concluded that PAR and de novo protein synthesis were essential for the recovery of UV-B-damaged photosynthetic apparatus.  相似文献   

16.
The ultrastructure of isolated fibrils of Chondrosia reniformis sponge collagen was investigated by collecting characteristic data, such as fibril thickness, width, D-band periodicity, and height modulation, using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Therefore an adapted pre-processing of the insoluble collagen into homogeneous suspensions using neutral buffer solutions was essential, and several purification steps have been developed. Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS) of the purified sponge collagen showed remarkable analogy of peak positions and intensities with the spectra of fibrillar calf skin type I collagen, despite the diverse phylogenetic and evolutionary origin. The sponge collagen's morphology is compared with that of other fibrillar collagens, and the typical banding of the separated single fibrils is discussed by comparison of topographical data obtained using AFM and corresponding TEM investigations using common staining methods. As the TEM images of the negatively stained fibrils showed alternating dark and light bands, AFM revealed a characteristic periodicity of protrusions (overlap zones) followed by two equal interband regions (gap zones). AFM and TEM results were correlated and multiperiodicity in Chondrosia collagen's banding is demonstrated. The periodic dark bands observed in TEM images correspond directly to the periodic protrusions seen by AFM. As a result, we provide an improved, updated model of the collagen's structure and organization.  相似文献   

17.
In vitro "simultaneous processing" was investigated in which fibril formation of collagen and cross-linking occur simultaneously in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) as a cross-linking reagent. Fibril formation in simultaneous processing was monitored using turbidity. The EDC in simultaneous processing increased T(1/2) (time required for half of the plateau value in turbidity) and decreased the degree of the fibril formation dose dependently. The reduced fibril formation rate (T(1/2) > 60 s) suggests the introduction of intrafibrillar cross-linking during fibril formation. The collagen gels prepared using simultaneous processing had a compressive modulus that was 6-fold higher than that using sequential processing, which is an advantage of simultaneous processing. Atomic force microscopy images acquired under water on the wet gels demonstrated that the simultaneous processing provided a unique double-network structure: intrafibrillarly cross-linked collagen fibrils among which nonfibrous collagens act as interfibrillar cross-linkages.  相似文献   

18.
Veen  A.  Reuvers  M.  Ronçak  P. 《Plant Ecology》1997,128(1-2):29-40
The green alga Selenastrum capricornutum was grown in a specially developed continuous culture system to study long-term effects of chronic UV-B exposure. The new system improves upon previous laboratory culture approaches. It is demonstrated that short-term experiments underestimate UV-B effects. It is also shown that photoinhibition cannot explain the effects under chronic exposure. Under both nutrient-replete and phosphorus-limiting conditions a UV-B mediated delay in cell division rate and an increase in the cellular content of proteins, carbohydrates and chlorophyll a was measured. Transition experiments showed that complete acclimatisation to UV-B took several cell cycles. DNA damage appears to be the major cause of the observed long-term UV-B effects.  相似文献   

19.
Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of glycoproteins, collagen, and proteoglycans. Proteoglycans have been suggested to play an important functional role in tissue differentiation. However, an understanding of how the extracellular matrix affects skeletal muscle development and function is largely unknown. In the avian genetic muscle weakness, low score normal (LSN), a late embryonic increase in the expression of decorin is followed by a subsequent increase in collagen crosslinking. The sarcomere organization, collagen fibril diameter and organization were investigated using transmission electron microscopy. Measurements were made at 20 days of embryonic development and 6 weeks posthatch. These studies showed changes in sarcomere organization and deterioration of muscle fibril structure in the LSN pectoral muscle. In vitro satellite cell cultures were developed and assayed for mitochondrial activity, and protein synthesis and degradation. In these analyses, mitochondrial activity from LSN satellite cells was significantly higher than those from normal pectoral muscle satellite cells. Protein synthesis rates between the normal and LSN satellite cell-derived myotubes were similar, but protein degradation rates were higher in the LSN cultures. Based on the reported functions of decorin as a regulator of cell proliferation and collagen fibril organization, it is possible that the late embryonic increase in decorin may be influencing the alterations in LSN sarcomere and collagen organization.  相似文献   

20.
Structural investigations on native collagen type I fibrils using AFM   总被引:1,自引:0,他引:1  
This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号