首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined cyclic AMP and cyclic GMP levels in 18 regions of rat brain following administration of two different centrally active cholinergic agonists. Administration of oxotremorine (2 mg/Kg IP), a muscarinic agonist, 10 minutes prior to sacrifice by exposure to high power microwave irradiation resulted in significant increases in cyclic GMP in cerebellum, brainstem, hippocampus, midbrain, thalamus and septal region. Cyclic AMP levels were significantly elevated in substantia nigra, nucleus interpeduncularis, hypothalamus, brainstem, midbrain and in the pituitary where a greater than tenfold increase was observed. Levels of plasma prolactin and corticosterone did not differ in any of the groups examined, but growth hormone was significantly lower in animals exposed to oxotremorine. Physostigmine (0.5 mg/Kg) a cholinesterase inhibitor, administered IP also produced elevations in cyclic AMP and cyclic GMP in several of the brain regions examined. These results indicate that multiple regions of the brain are responsive to central cholinergic activation of not only cyclic GMP, but also cyclic AMP system.  相似文献   

2.
Abstract— Incubation of guinea-pig superior cervical ganglia in 500μ4mUm -carbachol for 2min increased cyclic GMP levels 530% over control values. The increase was blocked by prior incubation in 300μm atropine. No increase in cyclic GMP levels after incubation in 100 μm -l -norepinephrine was observed. Preganglionic physiological stimulation for 8 min at 10 Hz increased cyclic GMP levels 180% over control values. We conclude that both muscarinic cholinergic and preganglionic physiological stimulation increase cyclic GMP levels in guinea pig superior cervical ganglia, while norepinephrine has no effect.  相似文献   

3.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10(-4) M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by alpha-adrenergic blockade with phenoxybenzamine. Epinephrine (4 - 10(-5) M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the beta-blocking agent, propranolol. Pure alpha-adrenergic stimulation with methoxamine (4 - 10(-4) M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 - 10(-6) M, isoproterenol (a beta-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 - 10(-5) M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cyclic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 - 10(-6) M). These data strongly suggest that cholinergic muscarinic agonists and alpha-adrenergic agonists stimulate amylase output in rabit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by alpha-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this tissue to the effects of cholinergic stimuli.  相似文献   

4.
Abstract: We have investigated the effects of (a) the cholinesterase inhibitor physostigmine and (b) drugs that are known to change intracellular cyclic GMP levels on the autoinhibition of acetylcholine release from rat hippocampal slices. Autoinhibition was triggered by submaximal electrical stimulation in both the absence and presence of physostigmine. The results obtained indicate that an unusual increase in the extracellular acetylcholine content, such as that induced by cholinesterase inhibition, is not essential for autoinhibition triggering. Dibutyryl cyclic GMP reduced significantly the stimulation-evoked acetylcholine release in the presence, but not in the absence, of atropine. Neither sodium nitroprusside nor glyceryl trinitrate exerted a dibutyryl cyclic GMP-like effect. N G-Nitro-L-arginine did not lessen the autoinhibition. These results indicate that an increase in the intracellular cyclic GMP level reduces acetylcholine release, and that the muscarinic receptor stimulation-nitric oxide synthesis-(soluble) guanylyl cyclase activation pathway is not involved in the cholinergic autoinhibition process.  相似文献   

5.
The effects of adrenergic and cholinergic agents, present singly or in combination, on the levels of cyclic AMP and cyclic GMP in slices of rat lung were studied. It was found that isoproterenol increased pulmonary cyclic AMP levels about 3-fold, and this increase was abolished by propranolol, but not by phenoxybenzamine. Acetylcholine increased the cyclic GMP levels also about 3-fold (thus raising its tissue content above that of cyclic AMP), and this increment was largely reduced by atropine, but not by hexamethonium. While without effects on the cyclic GMP levels when present alone, isoproterenol antagonized acetylcholine in increasing cyclic GMP levels. Acetylcholine, while lacking effects on the basal levels of cyclic AMP, on the other hand, depressed the augmented levels caused by isoproterenol.The data presented indicate that cyclic GMP may mediate the cholinergic action in lung and that the pulmonary cyclic GMP levels are also closely regulated by β-adrenergic receptor activation.  相似文献   

6.
Both dimethylphenylpiperazinium (DMPP), a nicotinic agonist, and bethanechol, a muscarinic agonist, increase 3,4-dihydroxyphenylalanine (DOPA) synthesis in the superior cervical ganglion of the rat. DMPP causes approximately a fivefold increase in DOPA accumulation in intact ganglia whereas bethanechol causes about a two-fold increase in DOPA accumulation. These effects are additive with each other and with the increase in DOPA accumulation produced by 8-bromo cyclic AMP. The action of DMPP is dependent on extracellular Ca2+ while the actions of bethanechol and 8-bromo cyclic AMP are not dependent on extracellular Ca2+. Cholinergic agonists and cyclic nucleotides produce a stable activation of tyrosine hydroxylase (TH) in the ganglion. The activation of TH by nicotinic and muscarinic agonists can be detected after 5 min of incubation of the ganglia with these agents. The nicotinic response disappears after 30 min of incubation, whereas the muscarinic response persists for at least 30 min. The Ca2+ dependence of the TH activation produced by these agents is similar to the Ca2+ dependence of their effects on DOPA accumulation in intact ganglia. These data are consistent with the hypothesis that nicotinic agonists, muscarinic agonists, and cyclic AMP analogues increase TH activity by three distinct mechanisms. The activation of TH presumably underlies the increase in DOPA synthesis produced by these agents.  相似文献   

7.
Autoinhibition of acetylcholine release by the coexisting peptide galanin in the septal afferents to the hippocampus of the rat was examined in tissue slices from the hippocampus. Galanin inhibits the evoked release of the coexisting neurotransmitter, acetylcholine, in the ventral hippocampus, providing an example of autoinhibition of release of a neurotransmitter by one of the coexisting neurotransmitters. The galanin mediated inhibition of the acetylcholine release is a complement to the well known strong cholinergic autoinhibition. The effects of the coexisting galanin and acetylcholine on several second messenger systems were also examined: acetylcholine acting at muscarinic receptors depresses cyclic adenosine 3',5'-monophosphate and stimulates elevation of cyclic guanosine 3',5'-monophosphate levels, whereas neither cyclic adenosine 3',5'-monophosphate nor cyclic guanosine 3',5'-monophosphate levels were affected by galanin (1 microM). Galanin however inhibited partly the muscarinic stimulation of phosphoinositide breakdown, suggesting that inositol phosphate(s) or diacylglycerol may act as second messenger(s) of the galanin action in the hippocampus. The effects of chronic changes in firing rate on the coexisting neurotransmitters in the rat ventral spinal cord containing serotonin, thyrotropin releasing hormone, substance P and substance K were examined. The tissue levels of the coexisting transmitters were studied in rats chronically treated with imipramine (14 days; 2 x 10 mumoles/kg/day) and zimelidine (14 days; 2 x 10 mumoles/kg/day). Upon treatment with zimelidine the tissue levels of the serotonin metabolite 5-hydroxyindoleacetic acid fall by 32% while thyrotropin releasing hormone levels seem to increase 35% and substance P/substance K levels also increase 48 and 72% respectively. Imipramine treatment resulted in similar although less pronounced changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10−4 M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by α-adrenergic blockade with phenoxybenzamine. Epinephrine (4 · 10−5 M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the β-blocking agent, propranolol. Pure α-adrenergic stimulation with methoxamine (4 · 10−4 M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 · 10−6 M, isoproterenol (a β-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 · 10−5 M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cylcic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 · 10−6 M).These data strongly suggest that cholinergic muscarinic agonists and α-adrenergic agonist stimulate amylase output in rabbit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by α-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this issue to the effects of cholinergic stimuli.  相似文献   

9.
Dibutyryl cyclic GMP (Bu2cGMP) inhibited agonist-induced secretion of amylase from isolated rat pancreatic acini. In contrast to previous studies, this inhibitory action was not confined to butyryl derivatives of cyclic GMP, since the membrane-permeant cyclic GMP analogues Bu2cGMP and cyclic 8-bromo-GMP (8-Br-cGMP) were equipotent (IC50 2 nM) in their inhibition of amylase secretion stimulated by cholecystokinin-(26-33)-octapeptide (CCK8): at extracellular concentrations up to 1 mM, cyclic GMP itself was devoid of inhibitory activity. Both Bu2cGMP and 8-Br-cGMP also potently inhibited secretion stimulated by 4 beta-phorbol 12-myristate 13-acetate (PMA) (IC50 6 nM), but only partially inhibited responses elicited by bethanechol or bombesin and were without effect on A23187-evoked secretion. Furthermore, agents that are known to raise intracellular cyclic GMP levels (MB22948 (2-o-propoxyphenyl-8-azapurin-6-one) or nitroprusside) or antagonize the actions of protein kinase C (4 alpha-PMA or staurosporine), also inhibited CCK8- or PMA-stimulated secretion but not secretion elicited by bombesin, bethanechol, or A23187. It is concluded from these and other observations reported here that protein kinase C is the major intracellular mediator of amylase secretion stimulated by CCK8 and that this pathway may be regulated by cyclic GMP at a step that follows protein kinase C activation.  相似文献   

10.
Elevation of cyclic GMP by muscarinic agonists has been suggested to be responsible for the negative inotropic effects of these agents in cardiac muscle, and for the endothelium-dependent relaxation caused by these agents in vascular smooth muscle. These relationships were studied by monitoring the effects of muscarinic agonists on tension and cyclic GMP levels in rabbit left atrial strips and aortic rings, in the presence and absence of the cyclic GMP lowering agent, LY83583. LY83583 completely blocked both the cyclic GMP increase and the relaxation caused by acetylcholine in rabbit aortic rings with intact endothelial cells. Acetylcholine-induced cyclic GMP elevation and relaxation in these preparations were also blocked by quinacrine and nordihydroguaiaretic acid (NDGA), but neither response was blocked by the 5-lipoxygenase inhibitor U-60257. In the experiments with rabbit left atrium, LY83583 blocked the acetylcholine-induced cyclic GMP elevation but did not block the negative inotropic effects of the drug. Quinacrine, NDGA, and a guanylate cyclase inhibitor, methylene blue, failed to block either the cyclic GMP increase or the decrease in contractile force caused by carbachol in atrial strips. These results support the suggestion that an increase in cyclic GMP may be responsible for the endothelium-dependent relaxation of rabbit aorta by muscarinic agonists, but not for the direct negative inotropic effects of these drugs in rabbit atrium. Muscarinic agents appear to increase cyclic GMP levels in rabbit atrium and aorta by different mechanisms. Although both are blocked by LY83583, they differ not only in their requirements for endothelial cells, but also in their susceptibility to other blocking agents.  相似文献   

11.
Cyclic GMP and cyclic AMP levels in eight different rat tissues were examined after animlas were immersed in liquid nitrogen. In order of decreasing concentration, cerebellu, kidney, lung and cerebral cortex contained the greatest quantities fo cyclic GMP. These tissues also contained relatively high concentrations of cyclic AMP. Compared to values in animals which were sacrificed in liquid nitrogen, levels of both nucleotides in many of the tissues examined were altered by decapitation or anesthesia with ether and pentobarbital. Decapitation increased the levels of both cyclic GMP and cyclic AMP in cerebellum, lung, heart, liver and skeletabl muscle. However, decapitation increased only cyclic AMP in cerebral cortex and kidney. Our previously reported high level of cyclic GMP in lung was attributed to ether anesthesia and surgical removal which increased the cyclic GMP content in lung, heart, testis and skeletal muscle. The effect of ether on cyclic GMP levels in lung and heart was blocked by pretreatment of animals with atropine which indicated that cholinergic agents increase cyclic GMP content in these tissues. Acetylcholine and carbachol in the presence of theophylline increased the accumulation of cyclic GMP in incubations of rat lung minces. Increases in cyclic GMP and cyclic AMP levels in cerebellum with ether anesthesia were prevented if rats were immersed in liquid nitrogen after anesthesis with ether. Anesthesia with pentobarbital decreased the levels of cyclic GMP in cerebellum and kidney and increased the nucleotide in heart, liver, testis and skeletal muscle compared to levels in tissues from animals immersed in liquid nitrogen. However, pentobarbital increased cyclic AMP levels in cerebellum and cerebral cortex and decreased the nucleotide in liver, kidney, testis and skeletal muscle. These studies provide a possible explanation for the variability in in vivo levels of cyclic GMP and cyclic AMP which have been previously reported. In addition, these studies support the hypothesis that the synthesis and degradation of cyclic AMP and cyclic GMP are regulated independently and not necessarily in a parallel or reciprocal manner. These studies also suggest that the increase accumulation of one cyclic nucleotide has no major effect on the synthesis and/or metabolism of the other; however, such interactions cannot be entirely excluded from the results of this study.  相似文献   

12.
The presence of gamma-hydroxybutyrate (GHB) (300-600 microM) in the incubation medium of rat hippocampal slices led to an increase of intracellular cyclic GMP and inositol phosphates. This phenomenon is dependent on the time and the dose of GHB used and might be the result of the stimulation of GHB receptor sites which are abundant in rat hippocampus. The increase of cyclic GMP and inositol phosphates is blocked by some anticonvulsants and opiate antagonists. These results seems to indicate that, like many substances inducing epileptic phenomena, GHB provokes neuronal depolarization in hippocampus which is accompanied by formation of cyclic GMP and inositol phosphates. The effect of opiate antagonists can be explained by the possible implication of an opiate synapse which mediates GHB effects in rat hippocampus.  相似文献   

13.
The ability of different receptors to mediate inhibition of cyclic AMP accumulation due to a variety of agonists was examined in rat striatal slices. In the presence of 1 mM 3-isobutyl-1-methylxanthine, dopamine D-2, muscarinic cholinergic, and opiate receptor stimulation by RU 24926, carbachol, and morphine (all at 10(-8)-10(-5) M), respectively, inhibited the increase in cyclic AMP accumulation in slices of rat striatum due to dopamine D-1 receptor stimulation by 1 microM SKF 38393. In contrast, these inhibitory agents were unable to reduce the ability of a number of other agonists, including isoprenaline, prostaglandin E1, 2-chloroadenosine, vasoactive intestinal polypeptide, and cholera toxin, to increase cyclic AMP levels in striatal slices. These results suggest that in rat striatum either dopamine D-2, muscarinic cholinergic, and opiate receptors are only functionally linked to dopamine D-1 receptors or that the D-1 and D-2 receptors linked to adenylate cyclase lie on the cells, distinct from other receptors capable of elevating striatal cyclic AMP levels.  相似文献   

14.
Abstract: Measurements were made of the effects of muscarinic agents on endogenous levels of cyclic AMP and cyclic GMP, and the turnover of radiolabeled inositol phosphates in the abdominal nervous system of larval Manduca sexta . Cyclic AMP levels were increased by treatment with 3-isobutyl-1-methylxanthine or tetrodotoxin, but the muscarinic agonist oxotremorine-M and the muscarinic antagonist scopolamine had no consistent effects. In contrast, cyclic GMP levels were significantly increased by oxotremorine-M and by oxotremorine-M in the presence of 3-isobutyl-1-methylxanthine and tetrodotoxin but not in the presence of scopolamine. Using lithium to inhibit the recycling of inositol phospholipid metabolites in isolated nerve cords, we detected a small but consistent increase in inositol phosphate production by oxotremorine-M. The primary inositol metabolite generated during a 5-min exposure to oxotremorine-M co-eluted from ion-exchange columns with inositol-1-monophosphate, although other more polar metabolites were also detected. This agonist-evoked increase in inositol phosphate production was unaffected by tetrodotoxin but inhibited by scopolamine, suggesting that it is directly mediated by muscarinic receptors. Further evidence for coupling between muscarinic receptors and inositol metabolism was obtained using a cell-free preparation of nerve cord membranes labeled with [3H]inositol. Incubation with oxotremorine-M evoked a significant increase in labeled inositol bisphosphate, consistent with muscarinic receptors coupling to phosphatidylinositol metabolism. The accumulation of inositol bisphosphate in cell-free preparations suggests that the normal breakdown to inositol monophosphate requires cytosolic components. Together, these results indicate that muscarinic acetylcholine receptors in Manduca couple predominantly to the inositol phospholipid signaling system, although some receptors may modulate cyclic GMP.  相似文献   

15.
Human erythrocytes possess a muscarinic cholinergic receptor sensitive to cholinergic agonists which stimulate transient increases in calcium uptake and subsequent cyclic GMP formation. These phenomena can be blocked by atropine and EGTA. The cholinergic stimulation of cyclic GMP formation depends on Ca2+ uptake from external media. The effects of cholinergic agonists on the erythrocyte resemble their effect on calcium channels in nervous tissue. The cholinergic stimulation of Ca2+ uptake in erythrocytes may affect the calcium-sensitive mechanism involved in the shape, permeability and rigidity of these cells.  相似文献   

16.
Density of muscarinic receptors of rat parotid gland, although unchanged after 5 or 10 min of stimulation of the parasympathetic nerve to the gland, showed a decrease of 23% following a 15-min period of stimulation. After 30 min the decrease was 19% but by 60 min density of receptors returned to within 5% of receptor density of the unstimulated gland; there was virtually no change in density of beta adrenoceptors at any time during the 60 min of stimulation. Markedly elevated (30-fold increase) levels of cyclic GMP appeared within 5 min after initiation of nerve stimulation and remained at this level at 10 min, but dropped from 90 to 46 pmol/mg total protein by 15 min, the time at which a decrease in muscarinic receptors first was evident. GMP levels continued to decrease but were still four times basal levels after 60 min of stimulation and did not return to normal concentration until 120 min. Cyclic AMP was generally unchanged. These changes in muscarinic receptors and cyclic GMP are apparently closely related to the kind of neural stimulation, unlike the condition when stimulation of the sympathetic nerve was employed.  相似文献   

17.
The involvement of glutamate in PAF-increased cyclic GMP levels was studied. Glutamate treatment caused a dose-response increase of cyclic GMP levels in hippocampal slices. The presence of 1 mM glutamate did not modify the effect caused by 10(-7)M PAF. To elucidate the involvement of glutamate in this action, slices were treated with PAF in the presence of MK-801, a NMDA receptor antagonist. Results indicate that PAF-increased cyclic GMP levels were obtained by NMDA receptors activation. Finally, results obtained from the experiments performed with PAF in the presence of riluzole, to inhibit the glutamate release, demonstrated that glutamate release is a stage in the PAF-induced increase of cyclic GMP levels in hippocampus.  相似文献   

18.
Levels of cyclic nucleotides and ornithine decarboxylase (ODC) activity were examined following the application of various kinds of stimuli to superior cervical sympathetic ganglia (SCG), nodose ganglia, and vagus nerve fibers excised from the rat. The level of cyclic GMP in the SCG rose rapidly to about 4.5- to 7.5-fold the unstimulated control with 10 min of incubation after applications of preganglionic electrical stimulation (10 Hz), acetylcholine (ACh; 1 mM), or high extracellular K+ ( [K+]0, 70 mM). The cyclic GMP level in nodose ganglia was increased less than in the SCG by either ACh or high [K+]0 but was not affected by ACh in vagus fibers. Cyclic AMP in the SCG was also increased about 4- to 5.5-fold over the control within 10 min with the addition of ACh, norepinephrine (NE; 0.05 mM), or high [K+]0. Although NE caused a small increase in cyclic AMP, neither ACh nor high [K+]0 produced any appreciable change in nodose ganglia or vagus fibers. The ODC activity in the SCG was increased by preganglionic stimulation of 3- to 4-hr duration but not by a shorter period. A similar change in ODC activity was caused by the addition of oxotremorine (1 mM), isoproterenol (0.1 mM), NE, cyclic AMP (1 mM), or dibutyryl cyclic GMP (1 mM). The effect was exaggerated by the further addition of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The increase in ODC activity caused by ACh was abolished by a muscarinic cholinergic antagonist, atropine (0.01 mM), and following axotomy for a week, but not by a nicotinic antagonist or by denervation in the SCG. A similar increase in ganglionic ODC activity by NE was inhibited by an adrenergic blocker, propranolol (0.01 mM), and following axtotomy for a week, but not by denervation. Cholinergic or adrenergic stimulation did not cause an increase in ODC activity in nodose ganglia or vagus fibers. These results suggest that the stimulation-induced increase in ODC activity occurs in postganglionic neurons rather than in satellite glial cells and is mediated by muscarinic cholinergic or adrenergic receptors. The process appears to involve cyclic nucleotide-mediated protein biosynthesis in the SCG.  相似文献   

19.
The ability of a large number of catecholamine analogs to stimulate DNA synthesis in the mouse parotid gland in vivo was compared to their effect on the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) in this tissue. In the normal parotid gland the level of cyclic GMP is very low (10?9 moles/kg wet wt), being only 1/800th of the cyclic AMP concentration. Isoproterenol increases the levels of cyclic AMP and cyclic GMP 30- and 3-fold, respectively. The increase in cyclic AMP is biphasic with an apparent early maximum at 2.5 min and a main peak at 15 min while the increase in cyclic GMP is monophasic with maximum levels at 15 min. Other analogs showed a similar effect on cyclic AMP levels but the time course of increases in cyclic GMP was very variable with peak stimulation as early as 1 min in some cases. The ability of analogs to cause the accumulation of cyclic AMP was correlated with their capacity to activate adenylate cyclase in parotid extracts and to act as β-adrenergic agonists in other systems. All compounds which raised cyclic AMP levels stimulated DNA synthesis but a number of other analogs also stimulated DNA synthesis. The effects of these analogs have been correlated with their ability to raise the intracellular concentration of cyclic GMP. Cholinergic agents also cause the accumulation of cyclic GMP but the effect of the analogs does not appear to be mediated through the cholinergic system as atropine does not block their effects and cholinergic agonists do not stimulate DNA synthesis. It is suggested that cholinergic agonists and the catecholamine analogs act primarily on the duct and acinar cells, respectively.Significant with inhibitors of the rises in cyclic nucleotide levels suggest that in isoproterenol stimulation it is the rise in cyclic GMP which is the more significant event in relation to stimulation of DNA synthesis.  相似文献   

20.
The effects of acetylcholine chloride and isoproterenol on myocardiial cyclic GMP, cyclic AMP and on isometric tension were studied in isolated electrically driven rabbit atria. Acetylcholine (0.5 muM) produced a significant decrease in isometric force that was associated with a significant elevation in atrial cyclic GMP. Cyclic AMP was significantly lowered at 15 seconds after the addition of acetylcholine, but was only slightly decreased at earlier time periods. Both the negative inotropic action and increase in cyclic GMP after addition of acetylcholine were blocked by atropine. Isoproterenol (0.1 muM) produced a significant increase in isometric tension that was associated with a significant elevation in atrial cyclic AMP levels, whereas cyclic GMP levels were not changed. These effects were blocked by practolol. The increases in atrial cyclic GMP and cyclic AMP following addition of acetylcholine and isoproterenol, respectively, preceded the changes in isometric tension in response to these agents. These data support the hypothesis that changes in intracellular levels of cyclic AMP and cyclic GMP may mediate the positive and negative inotropic effects of adrenergic and cholinergic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号