首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distal wall of the groove between the rat forestomach and glandular stomach is lined with a special type of columnar cells (CCGG) and with fibrillovesicular cells (FVC). The cardiac glands contain cardiac mucosa (CMC) and serous cells (CSC). The CCGG contain small mucous granules and special vesicles and tubules. The CMC are filled with large mucous granules and resemble mucous neck cells. The CSC are filled with large proteinaceous granules. The FVC are characterized by long microvilli, apical bundles of microfilaments and a complex "tubulovesicular system". The pattern of 3H-thymidine incorporation and the presence of immature and transitional forms indicate a possible origin of all the cell types concerned from a common undifferentiated precursor. The membranes of the tubulovesicular system of FVC as well as the apical cell membrane were reactive to Thiéry's carbohydrate stain. However, lanthanum tracing of the extracellular space and ultrastructural stereoscopy did not reveal a permanent continuity between both membrane systems. The absence of 3H-thymidine label showed that FVC were not proliferative. The structural characteristics of FVC do not account for a secretory, resorptive or receptive function. The special arrangement of microfilaments and the tubulovesicular system suggests an ability to fast changes in surface area.  相似文献   

2.
The fine structure of tuft cells in the main excretory duct of rat submandibular gland was investigated using the high pressure freezing and freeze substitution (HPF-FS) method and compared with that seen with both conventional chemical fixation (CF) method and en bloc treatment with ruthenium red. Some MEDs also were subjected to histochemistry for lectins. The apical vesicles and tubules of tuft cells observed by TEM after the HPF-FS method were different in shape from those treated by CF. With the first method, these vesicles and tubules, which may represent sections of a tubular system, appeared more slender and filled with a material of moderate density. A prominent glycocalyx covering the microvillar plasma membrane was observed in tuft cells processed both with the HPF-FS method and with ruthenium red. The surface of microvilli and the tubulo-vesicular structures of these cells exhibited the same soybean agglutinin (SBA) reactivity, suggesting a relationship between them.  相似文献   

3.
Summary The mitochondria-rich (chloride) cells have been found to be present in the gill epithelia of four species of stenohaline fresh water teleosts. The cytoplasm of these chloride cells contains an extensive network of cytoplasmic tubules which communicate with intercellular spaces bordering the lateral and basal cell surfaces. Numerous vesicles with fairly electron-dense interiors are also present in the apical cytoplasm of chloride cells. The apical surface of a chloride cell forms an apical pit, but the lumen of the pit does not appear to be in continuity with the interior of the apical vesicles and tubules inside the cell.When Carassius auratus were kept in 100, 200, 300, and 400 mOsm-diluted sea water for a month, no appreciable changes occurred in the number and fine structure of the chloride cells, except for a dilation of the apical vesicles and a slight decrease in diameter of the cytoplasmic tubules in these cells in the fishes kept in 300 and 400 mOsm.These results suggest that chloride cells may be a rather common occurrence in the gill epithelia of stenohaline fresh water teleosts, and may function in ion-transport in these fishes in fresh water environments.  相似文献   

4.
Morphology of the pronephros of the juvenile brown trout, Salmo trutta   总被引:1,自引:0,他引:1  
The pronephros in juvenile brown trout (Salmo trutta) consists of a large ovoid renal corpuscle and a pair of tubules. The corpuscle is retained for 11 months, after which the glomerulus regresses. The glomerular arteries come directly from the dorsal aorta. The interstitium is permeated with venous blood vessels that arise from the anterior cardinal veins and are closely apposed to the tubules. Two distinct segments of the pronephric tubular system are distinguished by the histological and ultrastructural features of their component cells: 1) a short, transitional neck in which cells change from capsular epithelium to columnar epithelium, typical of tubules; 2) the convoluted segment composed of cells similar to first proximal tubular cells of the opisthonephros with well-formed brush borders, apical vesicles that vary in size and number along this segment, and lysosomes. Pinocytosis and exocytosis are also evident in this segment. The tubular system increases in length and in its convolutions until about week 9, when the opisthonephros develops. Distally each tubule connects with a Wolffian duct, with cells marked by the absence of apical inclusions and the presence of a uniform brush border, numerous mitochondria, and elaborate infolding of the basalar membrane. Nephrostomes, which are often characteristic of pronephroi, are not present. Cells with long cilia are found throughout the tubular system but are most characteristic of the neck and Wolffian-duct segments.  相似文献   

5.
The nonciliated cells lining the ductuli efferentes presented three distinct cytoplasmic regions. The apical region contained, in addition to cisternae of endoplasmic reticulum and mitochondria, two distinct membranous elements. The tubulovesicular system consisted of dilated tubules connected to the apical plasma membrane and subjacent distended vesicular profiles. The apical tubules, not connected to the cell surface, consisted of numerous densely stained tubules of small size which contain a compact, finely granulated material. The supranuclear region, in addition to a Golgi apparatus and ER cisternae, contained dilated vacuoles, pale and dense multivesicular bodies, as well as numerous dense granules identified cytochemically as lysosomes. The basal region contained the nucleus and many lipid droplets. The endocytic activity of these cells was investigated using cationic ferritin (CF) and concanavalin-A-ferritin (Con-A-ferritin) as markers of adsorptive endocytosis; and native ferritin (NF), concanavalin-A-ferritin in the presence of alpha-methyl mannoside, and horseradish peroxidase or albumin bound to colloidal gold for demonstrating fluid-phase endocytosis. These tracers were injected separately into the rete testis, and animals were sacrificed at various time intervals after injection. At 1 min, CF or Con-A-ferritin were seen bound to the apical plasma membrane, to the membrane of microvilli, and to the membrane delimiting elements of the tubulovesicular system. Between 2 and 5 min, these tracers accumulated in the densely stained apical tubules and at 15 min in the dilated vacuoles. Between 30 min and 1 hr, the tracers appeared in multivesicular bodies of progressively increasing density, whereas at 2 hr and later time intervals, many dense lysosomal elements became labeled. The tracers for fluid-phase endocytosis showed a distribution similar to that for CF or Con-A-ferritin except that they did not bind to the apical plasma membrane, microvilli, or membrane delimiting the tubulovesicular system. At no time interval were any of the tracers observed in the abluminal spaces. Thus, the nonciliated epithelial cells of the ductuli efferentes are actively involved in fluid-phase and adsorptive endocytosis, both of which result in the sequestration of endocytosed material within the lysosomal apparatus of the cell.  相似文献   

6.
The morphological features of boar seminal vesicles were examined by light and transmission microscopy. Boar seminal vesicles consist of glandular tissue arranged in multiple lobules containing a system of ramified secretory tubules. The secretory tubules are composed of a mucosa formed by an epithelium and an underlying lamina propria and, are surrounded by a muscular layer. The epithelium is made up of columnar cells and occasional basal cells. Mast cells are frequently found among epithelial cells. Three types of columnar cells, considered different stages of the secretory cell cycle, are present: principal cells, clear cells and dense cells. Principal cells are functionally differentiated cells characterised by abundant mitochondria, great development of the rough endoplasmic reticulum and presence of secretory granules in their cytoplasm. The apical surface of many principal cells shows apical blebs filled with PAS-positive material. No acid mucosubstances are detected. Microvilli cover the apical surface except in the apical blebs. Dense cells, arranged between principal cells, are also functional differentiated cells but with signs of cellular degeneration. Clear cells are an initial differentiated stage of columnar cells and are characterised by the presence of a poorly developed rough endoplasmic reticulum and by the absence of secretory granules. Proliferating cells are present among columnar cells. Basal cells contain scarce cytoplasm, few organelles and no secretory granules. The lack of mitotic activity in these cells suggests that they do not act as precursors of columnar cells.  相似文献   

7.
Gastric parietal cells in mice present a spectrum of microscopic appearances due mainly to variations in the abundance of the tubular and vesicular component of the cytoplasm and in the size and number of microvilli lining the intracellular canaliculi. Differences in the range of forms among parietal cells of fasting versus fed mice were not especially striking, but cells with very numerous tubules and vesicles were more common after fasting. However, in mice treated with drugs or hormones that induce acid secretion, parietal cells were more uniform in appearance. There was a marked reduction of these cytoplasmic membranes and a concomitant increase in both the number and size of microvilli. Measurements of acid secretion in control animals and in animals treated with acid secretagogues indicated hydrogen ion secretion contemporaneous with depletion of the cytoplasmic tubulovesicular membranes and with increase of the microvilli. In mice with inhibited acid secretion, parietal cells showed an accumulation of cytoplasmic tubules and vesicles and reduction in the numbers of microvilli. Stereological methods were used to quantitate 10 different parietal cell compartments. Tracer studies with lanthanum did not reveal continuity between the tubules and the plasma membrane. However, there were regions of close apposition between the tubulovesicular membranes and the cell membrane of the canaliculus, and instances where cytoplasmic tubules extended from the cell into the core of enlarged microvilli.  相似文献   

8.
The nervous system of the planula larva of Anthopleura elegantissima consists of an apical organ, one type of endodermal receptor cell, two types of ectodermal receptor cells, central neurons and nerve plexus. Both interneural and neuromuscular synapses are found in the nerve plexus. The apical organ is a collection of about 100 long, columnar cells each bearing a long cilium and a collar of about 10 microvilli. The cilia of the apical organ are twisted together to form an apical tuft. The ciliary rootlets of the apical organ cells are extremely long, reaching to the basal processes of the cells adjacent to the mesoglea. All three types of sensory cells are tall and slender in profile and are identified by the presence of one or more of the following features: microtubules, small vesicles, membrane-bound granules and synapses. The interneurons are bipolar cells with somas restricted to the aboral end, adjacent to the apical organ. All synapses observed are polarized or asymmetrical. A diagram including all the elements of the nervous system is presented and the possible functions of the nervous system are discussed in relation to larval behavior.  相似文献   

9.
Summary The ileal absorptive cells of suckling rats exhibit high levels of endocytic activity being engaged in nonselective uptake of macromolecules from the intestinal lumen. The apical cytoplasm usually contains an extensive network of small, membrane-limited tubules (apical tubules: AT), in addition to newly formed endocytic vesicles and large endocytic vacuoles. To determine whether the AT are directly involved in the endocytic process by carrying the tracer into the cell, we have analysed movements of the apical cell membrane of the ileal absorptive cells by using a membrane-bound tracer (horseradish peroxidase-labelled cancanavalin-A: Con-A HRP). The ileal absorptive cells were exposed in vitro to Con-A HRP for 10 min at 4° C, incubated for different times in Con-A free medium at 37° C, and prepared for electron microscopy. After 1 min incubation at 37° C, invaginations of the apical cell membrane, including coated pits, and endocytic vesicles were labelled with HRP-reaction product, whereas the AT and large endocytic vacuoles were negative. After 2.5 min, almost all the large endocytic vacuoles were labelled with reaction product, which was seen in their vacuolar lumen and along the luminal surface of their limiting membrane. A few AT with reaction product were seen in the apical cytoplasm; they were in frequent connection with the reaction-positive large endocytic vacuoles. With increasing incubation time, the number of the labelled AT increased. Thus, after 15 min at 37° C, the apical cytoplasm was fully occupied by the reaction-positive AT. The ends of these AT were often continuous with small spherical coated vesicles. No reaction product was detected in the Golgi complex at any time after incubation. These observations indicate that the AT located in the apical cytoplasm probably originate by budding off from the large endocytic vacuoles, rather than being involved in the process of endocytosis.  相似文献   

10.
We have determined the kinetics of endoplasmic reticulum (ER) reconstitution following insertion of rat-liver smooth microsomes (SM) into Xenopus oocyte cytoplasm using electron microscopy as well as cytochemistry and thick-section 3-dimensional reconstruction. Oocytes were fixed 0, 10, 20, 40, 80, and 120 min after microinjection with SM and processed for thin- and thick-section electron microscopy. At 0 min postinjection, rat liver SM were observed as small vesicles and were loosely dispersed amongst oocyte organelles. At 10 min, tubules were discerned among many elongate vesicles; and these structures comprised large cytoplasmic regions delimited by mitochondria and yolk platelets. By 20 min, segregation of transplanted organelles yielded yolk-platelet-free regions composed of few vesicles but increasingly numerous, long and anastomosing tubules. By 40 min, a network with numerous tubular branches and fenestrations was observed among the few remaining vesicles. By 80 min, transformation of rat liver SM into a complex network of branching and anastomosing tubules was complete. Three-dimensional reconstruction revealed the network to be composed of interconnecting elements consisting of anastomosing tubules. The reconstituted network of anastomosing tubules in Xenopus oocytes was compared to the network of anastomosing tubules in rat liver hepatocytes and was found to be essentially identical. Network formation occurred in oocytes pretreated with either vinblastine (40 microM) or nocodazole (0.166 microM), and network organization was maintained in oocytes treated with the same drugs after microinjection and reconstitution. We conclude that SM retain sufficient molecular information for rapid self-assembly into structures resembling those in the cells from which they were derived. Both the assembly and maintenance of ER structure in oocyte cytoplasm are microtubule-independent. The formation of such structures following microinjection of SM into living cells provides a unique assay for this type of membrane subfraction.  相似文献   

11.
Vacuole inheritance is temporally coordinated with the cell cycle and is restricted spatially to an axis between the maternal vacuole and the bud. The new bud vacuole is founded by a stream of vacuole-derived membranous vesicles and tubules which are transported from the mother cell into the bud to form the daughter organelle. We now report in vitro formation of vacuole-derived tubules and vesicles. In semi-intact cells, formation of tubulovesicular structures requires ATP and the proteins encoded by VAC1 and VAC2, two genes which are required for vacuole inheritance in vivo. Isolation of vacuoles from cell lysates before in vitro incubation reveals that formation of tubulovesicular structures requires cytosol as well as ATP. After forming tubulovesicular structures, isolated vacuoles subsequently increase in size. Biochemical assays reveal that this increase results from vacuole to vacuole fusion, leading to mixing of organellar contents. Intervacuolar fusion is sensitive to the phosphatase inhibitors microcystin-LR and okadaic acid, suggesting that protein phosphorylation/dephosphorylation reactions play a role in this event.  相似文献   

12.
几种淡水鱼的胃腺细胞显微与超微结构的研究   总被引:8,自引:0,他引:8  
王韫明  王文 《水生生物学报》1989,13(4):334-339,T001,T002
尼罗非鲫的胃腺细胞和一般硬骨鱼类的泌酸胃酶细胞结构不同,属典型的泌酸细胞,与哺乳动物的壁细胞十分相似,细胞内充满微管泡系和线粒体,但是没有发现胃蛋白酶原颗粒,粗面内质网也极少,乌鳢,鲇和黄颡鱼的胃腺细胞则为典型的泌酸酶原细胞,除有微管泡系和线粒体外,还有丰富的胃蛋白酶原颗 和粗面内质网,用显示盐酸的Western方法证明这两类胃腺细胞都能分泌盐酸,但对检测色氨酸的Adams方法,两者都呈阴性反应,未能证明乌鳢胃细胞中胃蛋白酶原的存在,可能乌鳢的胃蛋白酶成分中色氨酸的含量不占多数,故未能检出。这两类胃腺细胞结构和功能的不同,与整个消化道结构的差别相一致,可能与它们的食性不同有关。微管泡系是两类胃腺细胞共有的结构,是泌酸的结构基础,由一系列短管的囊泡组成,在鱼类中,泌酸过程可能有顶浆分泌和局部分泌两种形式,泌酸活动中细胞顶膜,微管泡系以及高尔基体之间膜的转移关系和泌酸形式有关。  相似文献   

13.
Two types of chloride cells were identified in the gill epithelium of freshwater-adapted guppies. One type, referred to as an "alpha-chloride cell," was a pale, elongated cell located at the base of the secondary lamella in close contact with the arterioarterial pillar capillaries. In its cytoplasm, membranous tubules in continuity with its basolateral plasma membrane formed an extended tridimensional network. The vesiculotubular system (Pisam: Anat. Rec. 200:401-414, 1981) consisted of a few tubules and vesicles located next to the apical plasma membrane. A second type, referred to as a "beta-chloride cell," was a darker, ovoid cell located in the interlamellar region of the primary epithelium facing the central venous sinus. Membranous tubules in continuity with the basolateral plasma membrane were unevenly distributed in the cytoplasm. A prominent vesiculotubular system composed of numerous vesicles and tubules was found between the Golgi apparatus and the apical surface. During seawater adaptation, the alpha-chloride cells increased in size and progressively transformed into characteristic "seawater alpha-chloride cells" with a well-developed, regular, tight tubular network and numerous vesicles and tubules of the vesiculotubular system accumulated below the apical pit. The beta-chloride cells underwent a progressive degeneration and disappeared. Thus, in freshwater-adapted guppies, there are two types of chloride cells, alpha and beta, respectively, related to the arterial and the venous vessels, whereas in seawater-adapted fishes, a single type of cell, the alpha-chloride cell, was related to both the arterial and venous channels.  相似文献   

14.
S L Dabora  M P Sheetz 《Cell》1988,54(1):27-35
The formation of a dynamic tubulovesicular membrane network that resembles the endoplasmic reticulum (ER) has been observed in extracts of cultured chick embryo fibroblasts (CEF cells) using video-enhanced differential interference contrast microscopy. Initially, membranes in the CEF extracts appeared amorphous and aggregated, but with time, membrane tubules moved out along stationary microtubules. The membrane tubules formed new branches on intersecting microtubules and fused with other branches to form a network of interconnected polygons. The tubulovesicular network was solubilized by detergent and took on a beaded morphology in a hypotonic buffer. Formation of the tubulovesicular network required ATP and microtubules. The network did not contain elements of the plasma membrane, Golgi apparatus, or mitochondria but could be labeled with ER markers. We suggest that the tubulovesicular network contains components from the ER and is formed by membrane associated motors moving upon microtubules in a process we call microtubule-dependent tethering.  相似文献   

15.
The epididymis and efferent duct system of the turtle Chrysemys picta were examined. Seminiferous tubules are drained by a series of ducts that form a rete exterior to the tunica albuginea. The rete is located lateral to the testis and consists of anastamosing tubules of varying diameters, lined by a simple epithelium consisting of squamous to cuboidal cells. The rete is highly vascularized. A series of tubules (efferent ductules) connect the rete to the epididymis proper. The efferent ductules are highly convoluted, running between the epididymal tubules and are of varying diameters. The simple columnar epithelium lining these tubules possesses tight junctions, with every third or fourth cell possessing long cilia that protrude into the lumen. The cytoplasm of these epithelial cells contains abundant mitochondria. In the central portion of the efferent ductule, epithelial cells possess granules that appear to be secreted into the lumen by an apocrine process. The epididymis proper is a single, long, highly convoluted tubule that receives efferent ductules along its entire length. It is lined by a pseudostratified epithelium containing several cell types. The most abundant cell (vesicular cell) lacks cilia, but has a darkly staining apical border due to numerous small vesicles immediately beneath the luminal membrane. The small vesicles appear to fuse with each other basally to form larger vesicles. These cells appear to have an absorptive function, and occasionally sperm are embedded in their cytoplasm. The second-most abundant cell is a basal cell found along the basement membrane. The number of these cells fluctuates throughout the year, being most abundant in late summer and early fall. A small narrow cell with an oval nucleus and darkly staining cytoplasm, extending from the basement membrane to the apical surface, is present in small numbers, particularly in the caudal regions of the epididymis. This cell is frequently found in association with another narrow cell having a rounded nucleus and abundant mitochondria in its cytoplasm.  相似文献   

16.
Summary Brush cells represent a population of epithelial cells with unknown function, which are scattered throughout the epithelial lining of both the respiratory system and the alimentary system. These cells are reliably distinguished from other epithelial cells only at the ultrastructural level by the presence of an apical tuft of stiff microvilli and extremely long microvillar rootlets that may project down to the perinuclear space. In the present study we show that brush cells can be identified in tissue sections even at the light microscopic level by immunostaining with antibodies against villin and fimbrin, two proteins that crosslink actin filaments to form bundles. In brush cells, villin and fimbrin are not only present in the actin filament core bundles of apical microvilli and their long rootlets but, in addition, both proteins are also associated with microvilli extending from the basolateral cell surface of the brush cells. Basolateral immunostaining specific for villin and fimbrin does not occur in any other epithelial cell type of the respiratory and alimentary tract. Thus immunostaining with antibodies against both proteins allows unequivocal identification of individual brush cells even in sectional planes that do not contain the brightly stained apical tuft of microvilli and their long rootlets.  相似文献   

17.
The chloride cells in the interlamellar areas of the gills of young adult, anadromous sea lampreys, Petromyzon marinus L., captured in fresh water undergo structural modification during the adaptation of these animals to sea water. In fresh water the chloride cells are partially overlapped by mucus-secreting superficial cells and contain an extensive reticulum of cytoplasmic tubules, which are confluent with both lateral and basal plasma membranes, numerous mitochondria, a Golgi complex of moderate size, and numerous apical vesicles. Adaptation to sea water results in a retraction of the superficial cells, exposing the entire apical surface of the chloride cells, and a proliferation of both cytoplasmic tubules and mitochondria. Extensive enlargement of the Golgi complex in the chloride cells of these animals suggests the involvement of this organelle in the proliferation of cytoplasmic tubules. The extracellular tracer, ruthenium red, enters the tubules from the lateral or basal intercellular spaces in both freshwater- and seawater-adapted animals but never enters either tubules or vesicles from the apical surfaces, indicating that these are not confluent. The presence of dividing basal cells and newly-forming chloride cells, combined with evidence of degeneration of chloride cells, suggests that there is a turnover of this cell type. Both superficial and basal cells are phagocytic and involved in heterophagy of degenerating chloride cells. This phenomenon occurs in both fresh water and sea water indicating that the chloride cells may be functional in both environments.  相似文献   

18.
Summary The trophotaenial absorptive cells (TACs) in goodeid embryos facilitate nutrient absorption during prolonged periods of intraovarian gestation. In a study of membrane differentiations associated with solute and ligand transfer in the trophotaeniae of Xenotoca eiseni, embryos were incubated in vivo with cationized ferritin (CF) prior to freeze-cleaving. This exposure to high concentrations of an adsorptive ligand was meant to induce swelling of the endosomal compartment. Macromolecular trafficking in TACs occurs via an apical endocytic complex consisting of plasma membrane invaginations, a large population of small vesicles, uniformly thick apical tubules, and endosomes. Freeze-fracture replicas showed that the microvillar plasma membrane P-face of TACs was studded with intramembrane particles (IMPs) at a fairly high density, whereas that of the cell surface proper contained a distinctly lower density and the tubulovesicular endocytic pits contained almost no IMPs. The majority of small vesicles and apical tubules in a near surface position displayed P-fracture faces with only a few odd IMPs, indicating that membrane, shuttling between the apical plasma membrane and intracellular sorting organelles, obviously does not carry along many large-sized integral membrane proteins. The distended endosomal compartment had many P-face-associated particles primarily clustered into patches. Specializations of the lateral plasma membrane included 4–8 tight junctional strands, relatively large complements of gap junction proteins, and numerous plaques of desmosomal membrane particles. A system of lamellar cisternae underlay the lateral cell surface that was in continuity with the intraepithelial space by numerous tubular canals, giving rise to an intracellular amplification of the basolateral plasma membrane. Their outward openings appeared as tiny pits on the cytoplasmic faces of freeze-cleaved cell membrane. The density of IMPs on the P-faces of the surface plasma membrane was apparently lower than that on its invaginated lamellar complex. Hence, it is concluded that the mobility of integral membrane proteins in the plane of the membrane may be hampered in movement across the surface pores.Supported by the Deutsche Forschungsgemeinschaft (Schi 268/1-1)  相似文献   

19.
An "apical endocytic complex" in the ileal lining cells of suckling rats is described. The complex consists of a continuous network of membrane-limited tubules which originate as invaginations of the apical plasma membrane at the base of the microvilli, some associated vesicles, and a giant vacuole. The lumenal surface of this tubular network of membranes and associated vesicles is covered with a regular repeating particulate structure. The repeating unit is an ~7.5-nm diameter particle which has a distinct subunit structure composed of possibly nine smaller particles each ~3 nm in diameter. The ~7.5-nm diameter particles are joined together with a center-to-center separation of ~15 nm to form long rows. These linear aggregates, when arranged laterally, give rise to several square and oblique two-dimensional lattice arrangements of the particles which cover the surface of the membrane. Whether a square or oblique lattice is generated depends on the center-to-center separation of the rows and on the relative displacement of the particles in adjacent rows. Four membrane faces are revealed by fracturing frozen membranes of the apical tubules and vesicles: two complementary inner membrane faces exposed by the fracturing process and the lumenal and cytoplasmic membrane surfaces revealed by etching. The outer membrane face reveals a distinct array of membrane particles. This array also sometimes can be seen on the outer (B) fracture face and is sometimes faintly visible on the inner (A) fracture face. Combined data from sectioned, negatively stained, and freeze-etched preparations indicate that this regular particulate structure is a specialization that is primarily localized in the outer half of the membrane mainly in the outer leaflet.  相似文献   

20.
The ultrastructural changes in langur monkey epididymis prior to and following vasectomy or vasovasostomy were studied. The epididymal epithelium of the intact langur monkey was found to consist mainly of principal cells and basal cells and frequently apical or mitochondria rich cells were found. Besides these cells intraepithelial lymphocytes were also a consistent feature of the epididymal epithelium. Principal cells identified by means of the tuft of the stereocilia on their apical surface, bear well developed Golgi bodies, endoplasmic reticulum, vesicles, vacuoles and multivesicular bodies. This suggests their active involvement in absorption and secretion. Basal cells present at the base of the lamina bear a few cellular organelles and strong interdigitations with the adjacent cells. Apical or mitochondria rich cells were characterized by clusters of mitochondria in the apical region of the cell and few microvilli on their apical surface. Lymphocytes with a large nucleus and a pale rim of cytoplasm were also found at the base of the epithelium. Secretory and absorptive functions of principal cells of the epididymal epithelium were found to be increased after vasectomy, as indicated by bulging of the apical portion of the principal cells and membrane bound structure in the lumen. An extensive increase in the number of lysosomes, vesicles and vacuoles was also observed. An increase in the number of macrophages with spermatozoa remnants in the lumen of epididymis suggests that the principal mechanism for spermatozoa disposal following vasectomy is intraluminal endocytosis by macrophages. Changes following vasectomy persisted in vasovasostomized animals even after 12 months of recanalization, which may contribute to the failure of functional reanastomosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号