首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
In previous studies involving Photobacterium species we proposed that (i) P-flavin is the product of luciferase, (ii) the physiological function of the lux operon is not to produce light but to produce FP(390) (luxF protein), including its prosthetic group, P-flavin, and (iii) FP(390) reactivates oxidatively inactivated cobalamin-dependent methionine synthase similar to flavodoxin but at relatively high ionic strength. It seems difficult to extend this idea to all luminous bacteria because the luxF gene is not present in the lux operon in Vibrio or Xenorhabdus. But we predicted that a luciferase fragment which binds P-flavin should function like FP(390) in these species. In this study, we isolated P-flavin binding protein from Vibrio fischeri ATCC 7744. The obtained protein was a modified luciferase as expected, in which the beta-subunit was intact but about 25 amino acid residues at the C-terminus of the alpha-subunit were deleted and the prosthetic group was the fully reduced P-flavin. These results strongly support that the physiological function of the lux operon is as described above even in luminous bacteria other than Photobacterium species. We propose that chromophore B reported by Tu and Hastings [Tu, S.-C. and Hastings, J.W. (1975) Biochemistry 14, 1975-1980] is the reduced P-flavin.  相似文献   

8.
Synthesis of the Vibrio fischeri autoinducer, a signal involved in the cell density-dependent activation of bioluminescence, is directed by the luxI gene product. The LuxI protein catalyzes the synthesis of N-acyl-homoserine lactones from S-adenosylmethionine and acylated-acyl carrier protein. We have gained an appreciation of the LuxI regions and amino acid residues involved in autoinducer synthesis by isolating and analyzing mutations generated by random and site-specific mutagenesis of luxI. By random mutagenesis we isolated 13 different single amino acid substitutions in the LuxI polypeptide. Eleven of these substitutions resulted in no detectable autoinducer synthase activity, while the remaining two amino acid substitutions resulted in reduced but detectable activity. The substitutions that resulted in no detectable autoinducer synthase activity mapped to two small regions of LuxI. In Escherichia coli, wild-type luxI showed dominance over all of the mutations. Because autoinducer synthesis has been proposed to involve formation of a covalent bond between an acyl group and an active-site cysteine, we constructed site-directed mutations that altered each of the three cysteine residues in LuxI. All of the cysteine mutants retained substantial activity as an autoinducer synthase in E. coli. Based on the analysis of random mutations we propose a model in which there are two critical regions of LuxI, at least one of which is an intimate part of an active site, and based on the analysis of site-directed mutations we conclude that an active-site cysteine is not essential for autoinducer synthase activity.  相似文献   

9.
10.
11.
12.
13.
The bacterium Vibrio fischeri requires bacterial motility to initiate colonization of the Hawaiian squid Euprymna scolopes. Once colonized, however, the bacterial population becomes largely unflagellated. To understand environmental influences on V. fischeri motility, we investigated migration of this organism in tryptone-based soft agar media supplemented with different salts. We found that optimal migration required divalent cations and, in particular, Mg2+. At concentrations naturally present in seawater, Mg2+ improved migration without altering the growth rate of the cells. Transmission electron microscopy and Western blot experiments suggested that Mg2+ addition enhanced flagellation, at least in part through an effect on the steady-state levels of flagellin protein.  相似文献   

14.
Shuttle vectors that had previously been shown to replicate both in Escherichia coli and in strains of Anabaena spp. were used to transfer the lux genes from Vibrio harveyi and Vibrio fischeri into Anabaena spp. The level of expression of luciferase in the cyanobacteria (up to 7,000 quanta cell-1 s-1) makes these genes good candidates for use as promoter probes during the differentiation of certain cells in a filament into heterocysts.  相似文献   

15.
A low molecular weight protein (approximately 25,000 D) exhibiting a yellow fluorescence emission peaking at approximately 540 nm was isolated from Vibrio fischeri (strain Y-1) and purified to apparent homogeneity. FMN is the chromophore, but it exhibits marked red shifts in both the absorption (lambda max = 380, 460 nm) and the fluorescence emission. When added to purified luciferase from the same strain, which itself catalyzes an emission of blue-green light (lambda max approximately 495 nm), this protein induces a bright yellow luminescence (lambda max approximately 540 nm); this corresponds to the emission of the Y-1 strain in vivo. This yellow bioluminescence emission is thus ascribed to the interaction of these two proteins, and to the excitation of the singlet FMN bound to this fluorescent protein.  相似文献   

16.
17.
AIMS: Physiological responses of marine luminous bacteria, Vibrio harveyi (ATCC 14216) and V. fischeri (UM1373) to nutrient-limited normal strength (35 ppt iso-osmolarity) and low (10 ppt hypo-osmolarity) salinity conditions were determined. METHODS AND RESULTS: Plate counts, direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. Vibrio harveyi incubated at 22 degrees C in nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d in microcosms of 35 ppt and 10 ppt ASW, respectively. In contrast, V. fischeri became nonculturable at approximately 55 and 31 d in similar microcosms. Recovery of both culturability and luminescence of cells in the viable but nonculturable state was achieved by addition of nutrient broth or nutrient broth supplemented with a carbon source, including luminescence-stimulating compounds. Temperature upshift from 22 degrees C to 30 degrees C or 37 degrees C did not result in recovery from nonculturability. CONCLUSIONS: The study confirms entry of V. harveyi and V. fischeri into the viable but nonculturable state under low-nutrient conditions and demonstrates nutrient-dependent resuscitation from this state. SIGNIFICANCE AND IMPACT OF THE STUDY: This study confirms loss of luminescence of V. harveyi and V. fischeri on entry into the viable but nonculturable state and suggests that enumeration of luminescent cells in water samples may be a rapid method to deduce the nutrient status of a water sample.  相似文献   

18.
19.
20.
Upon hatching, the Hawaiian squid Euprymna scolopes is rapidly colonized by its symbiotic partner, the bioluminescent marine bacterium Vibrio fischeri . Vibrio fischeri cells present in the seawater enter the light organ of juvenile squid in a process that requires bacterial motility. In this study, we investigated the role chemotaxis may play in establishing this symbiotic colonization. Previously, we reported that V.?fischeri migrates toward numerous attractants, including N-acetylneuraminic acid (NANA), a component of squid mucus. However, whether or not migration toward an attractant such as squid-derived NANA helps the bacterium to localize toward the light organ is unknown. When tested for the ability to colonize juvenile squid, a V. fischeri chemotaxis mutant defective for the methyltransferase CheR was outcompeted by the wild-type strain in co-inoculation experiments, even when the mutant was present in fourfold excess. Our results suggest that the ability to perform chemotaxis is an advantage during colonization, but not essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号