首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three E. coli strains, named VAL22, VAL23, and VAL24, were engineered at the level of mixed-acid fermentation pathways to improve culture performance under transient anaerobic conditions. VAL22 is a single mutant with an inactivated poxB gene that codes for pyruvate oxidase which converts pyruvate to acetate. VAL23 is a double mutant unable to produce lactate and formate due to deletions of the ldhA and pflB genes that code for lactate dehydrogenase and pyruvate-formate lyase, respectively. VAL24 is a triple mutant with ldhA and pflB deleted and poxB inactivated. Engineered strains were cultured under oscillating dissolved oxygen tension (DOT) in a scale-down system, to simulate gradients occurring in large-scale bioreactors. Kinetic and stoichiometric parameters of constant (10%) and oscillating DOT cultures of the engineered strains were compared with those of the parental strain, W3110. All strains expressed recombinant green fluorescent protein (GFP) as a protein model. Mutant strains showed improved specific growth rate, reduced by-product formation, and reduced specific glucose uptake rate compared to the parental strain, when cultured under oscillating DOT. In particular, lactate and formate production was abolished and acetate accumulation was reduced by 9-12%s. VAL24 showed the best performance, as specific growth and GFP production rates, and maximum GFP concentration were not affected by DOT gradients and were at least twofold higher than those of W3110 under constant DOT. Under oscillating DOT, VAL24 wasted about 40% less carbon into fermentation by-products than W3110. It was demonstrated that, although E. coli responds rapidly to DOT fluctuations by deviating to fermentative metabolism, such pathways can be eliminated as they are not necessary for bacterial survival during the short circulation times typical of large-scale cultures. The approach shown here opens new possibilities for designing metabolically engineered strains, with reduced sensitivity to DOT gradients and improved performance under typical conditions of large-scale cultures.  相似文献   

3.
4.
The response of Escherichia coli cells to transient exposure (step increase) in substrate concentration and anaerobiosis leading to mixed‐acid fermentation metabolism was studied in a two‐compartment bioreactor system consisting of a stirred tank reactor (STR) connected to a mini‐plug‐flow reactor (PFR: BioScope, 3.5 mL volume). Such a system can mimic the situation often encountered in large‐scale, fed‐batch bioreactors. The STR represented the zones of a large‐scale bioreactor that are far from the point of substrate addition and that can be considered as glucose limited, whereas the PFR simulated the region close to the point of substrate addition, where glucose concentration is much higher than in the rest of the bioreactor. In addition, oxygen‐poor and glucose‐rich regions can occur in large‐scale bioreactors. The response of E. coli to these large‐scale conditions was simulated by continuously pumping E. coli cells from a well stirred, glucose limited, aerated chemostat (D = 0.1 h?1) into the mini‐PFR. A glucose pulse was added at the entrance of the PFR. In the PFR, a total of 11 samples were taken in a time frame of 92 s. In one case aerobicity in the PFR was maintained in order to evaluate the effects of glucose overflow independently of oxygen limitation. Accumulation of acetate and formate was detected after E. coli cells had been exposed for only 2 s to the glucose‐rich (aerobic) region in the PFR. In the other case, the glucose pulse was also combined with anaerobiosis in the PFR. Glucose overflow combined with anaerobiosis caused the accumulation of formate, acetate, lactate, ethanol, and succinate, which were also detected as soon as 2 s after of exposure of E. coli cells to the glucose and O2 gradients. This approach (STR‐mini‐PFR) is useful for a better understanding of the fast dynamic phenomena occurring in large‐scale bioreactors and for the design of modified strains with an improved behavior under large‐scale conditions. Biotechnol. Bioeng. 2009; 104: 1153–1161. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
The metabolic burden and the stress load resulting from temperature-induced production of human basic fibroblast growth factor is connected to an increase in the respiratory activity of recombinant Escherichia coli, thereby reducing the biomass yield. To study the underlying changes in metabolic enzyme synthesis rates, the radiolabeled proteom was subjected to two-dimen- sional gel electrophoresis. After temperature-induction, the cAMP-CRP controlled dehydrogenases of the pyruvate dehydrogenase complex and the tricarboxylic acid cycle (LpdA and SdhA) were induced four times, reaching a maximum 1 h after the temperature upshift. The more abundant tricarboxylic acid cycle dehydrogenases (Icd and Mdh) were initially produced at reduced rates but regained preshift rates within 30 min. The adenylate energy charge dropped immediately after the temperature upshift but recovered within 1 h. Similar profiles in dehydrogenase synthesis rates and adenylate energy charge were found in a control cultivation of a strain carrying the "empty" parental expression vector. Although both strains exhibited significant differences in growth pattern and respiration rates after the temperature upshift, the adaptation of the energetic state of the cells and the synthesis of enzymes from the energy-generating catabolic pathway did not seem to be affected by the strong overproduction of the recombinant growth factor. In contrast, the synthesis rates of enzymes belonging to the biosynthetic machinery, e.g., translational elongation factors, decreased more strongly in the culture synthesizing the recombinant protein. In control and producing culture, synthesis rates of elongation factors paralleled the respective growth rate profiles. Thus, cells seem to readjust their metabolic activities according to their energetic requirements and, if necessary, at the cost of their biosynthetic capabilities.  相似文献   

6.
The impact of temperature-induced synthesis of human basic fibroblast growth factor (hFGF-2) in high-cell-density cultures of recombinant Escherichia coli was studied by estimating metabolic flux variations. Metabolic flux distributions in E. coli were calculated by means of a stoichiometric network and linear programming. After the temperature upshift, a substantially elevated energy demand for synthesis of hFGF-2 and heat shock proteins resulted in a redirection of metabolic fluxes. Catabolic pathways like the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid (TCA) cycle showed significantly enhanced activities, leading to reduced flux to growth-associated pathways like the pentose phosphate pathway and other anabolic pathways. Upon temperature upshift, an excess of NADPH was produced in the TCA cycle by isocitrate dehydrogenase. The metabolic model predicted the involvement of a transhydrogenase generating additional NADH from NADPH, thereby increasing ATP regeneration in the respiratory chain. The influence of the temperature upshift on the host's metabolism was investigated by means of a control strain harboring the "empty" parental expression vector. The metabolic fluxes after the temperature upshift were redirected similarly to the production strain; the effects, however, were observed to a lesser extent and with different time profiles.  相似文献   

7.
The effects of dissolved oxygen (DO) concentration on virally infected insect cells were investigated in 3-L bioreactor culture. Specifically, cultures of Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) were infected with Autographa californica multiple nucleopolyhedrovirus expressing secreted alkaline phosphatase (SEAP). Following infection at a DO concentration of 50% air saturation, the DO concentration was adjusted to a final value of either 190%, 50%, or 10% air saturation. Recombinant SEAP production, cell viability, protein carbonyl content, and thiobarbituric acid reactive substances (TBARS) content were monitored. The increases in protein carbonyl and TBARS contents are taken to be indicators of protein oxidation and lipid oxidation, respectively. DO concentration was found to have no noticeable effect on SEAP production or cell viability decline in the Sf-9 cell line. In the Tn-5B1-4 cell line, cells displayed an increased peak SEAP production rate for 190% air saturation and displayed an increased rate of viability decline at increased DO concentration. Protein carbonyl content showed no significant increase in the Sf-9 cell line by 72 h postinfection (pi) at any DO concentration but showed a twofold increase at 10% and 50% DO concentration and a threefold increase at 190% DO concentration by 72 h pi in Tn-5B1-4 cells. TBARS content was found to increase by approximately 50% in Sf-9 cells and by approximately twofold in Tn-5B1-4 cells by 72 h pi with no clear relationship to DO concentration. It is hypothesized that oxygen uptake changes due to the viral infection process may bear a relation to the observed increases in protein and lipid oxidation and that lipid oxidation may play an important role in the death of virally infected insect cells.  相似文献   

8.
9.
The production of proteins in sufficient amounts is key for their study or use as biotherapeutic agents. Escherichia coli is the host of choice for recombinant protein production given its fast growth, easy manipulation, and cost‐effectiveness. As such, its protein production capabilities are continuously being improved. Also, the associated tools (such as plasmids and cultivation conditions) are subject of ongoing research to optimize product yield. In this work, we review the latest advances in recombinant protein production in E. coli.  相似文献   

10.
A problem with the use of Escherichia coli to produce foreign proteins is that although endogenously produced acetate is physiologically indispensable, it inhibits protein expression. Here we firstly employed an antisense RNA strategy as an elaborate metabolic engineering tool to partially block biosynthesis of two major acetate pathway enzymes, phosphotransacetylase (PTA) and acetate kinase (ACK). Three recombinant plasmids containing antisense genes targeting either or both of pta and ackA were constructed, and their effects on the acetate pathway and foreign protein productivity compared to control plasmid without any antisense genes were determined in E. coli BL21. Green fluorescent protein (GFP) was employed as a model foreign protein, and timing of antisense expression was controlled by using the intrinsic ackA promoter. We found that the antisense method partially reduced mRNA levels of target enzyme genes and, over time, lowered the concentration of acetate in culture media in all antisense-regulated strains. Notably, total production of GFP was enhanced 1.6- to 2.1-fold in antisense-regulated strains, even though the degree of acetate reduction was not significantly large. It was revealed that the acetate pathway has more critical roles in cellular physiology than expected in the previous reports. When the scale of culture was increased, enhancement of protein production became larger, demonstrating that this antisense strategy can be successfully applied to practical large-scale protein production processes.  相似文献   

11.
As Escherichia coli (E. coli) is well defined with respect to its genome and metabolism, it is a favored host organism for recombinant protein production. However, many processes for recombinant protein production run under suboptimal conditions caused by wrong or incomplete information from an improper screening procedure, because appropriate on-line monitoring systems are still lacking. In this study, the oxygen transfer rate (OTR), determined on-line in shake flasks by applying a respiration activity monitoring system (RAMOS) device, was used to characterize the metabolic state of the recombinant organisms. Sixteen clones of E. coli SCS1 with foreign gene sequences, encoding for different target proteins, were cultivated in an autoinduction medium, containing glucose, lactose, and glycerol, to identify relationships between respiration activity and target protein production. All 16 clones showed a remarkably different respiration activity, biomass, and protein formation under induced conditions. However, the clones could be classified into three distinct types, and correlations could be made between OTR patterns and target protein production. For two of the three types, a decrease of the target protein was observed, after the optimal harvest time had passed. The acquired knowledge was used to modify the autoinduction medium to increase the product yield. Additional 1.5 g/L glucose accelerated the production process for one clone, shifting the time point of the maximal product yield from 24 to 17 h. For another clone, lactose addition led to higher volumetric product yields, in fact 25 and 38% more recombinant protein for 2 and 6 g/L additional lactose, respectively.  相似文献   

12.
The bacterium Escherichia coli is among the most popular hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently generated the specialized MP-producing E. coli strain SuptoxD, which upon co-expression of the effector gene djlA, is capable of alleviating two major bottlenecks in bacterial recombinant MP production: it suppresses the toxicity that frequently accompanies the MP-overexpression process and it markedly increases the cellular accumulation of membrane incorporated and properly folded recombinant MP. Combined, these two positive effects result in dramatically enhanced volumetric yields for various recombinant MPs of both prokaryotic and eukaryotic origin. Based on the observation that djlA is found in the genomes of various pathogenic bacteria, the aim of the present work was to investigate (a) whether other naturally occurring DjlA variants can exert the MP toxicity-suppressing and production-promoting effects similarly to the E. coli DjlA and (b) if we can identify a DjlA variant whose efficiency surpasses that of the E. coli DjlA of SuptoxD. We report that a quite surprisingly broad variety of homologous DjlA proteins exert beneficial effects on recombinant MP when overexpressed in E. coli. Furthermore, we demonstrate that the Salmonella enterica DjlA is an even more potent enhancer of MP productivity compared with the E. coli DjlA of SuptoxD. Based on this, we constructed a second-generation SuptoxD strain, termed SuptoxD2.0, whose MP-production capabilities surpass significantly those of the original SuptoxD, and we anticipate that SuptoxD2.0 will become a broadly utilized expression host for recombinant MP production in bacteria.  相似文献   

13.
Snakin‐1 (SN‐1) is a cysteine‐rich plant antimicrobial peptide and the first purified member of the snakin family. SN‐1 shows potent activity against a wide range of microorganisms, and thus has great biotechnological potential as an antimicrobial agent. Here, we produced recombinant SN‐1 in Escherichia coli by a previously developed coexpression method using an aggregation‐prone partner protein. Our goal was to increase the productivity of SN‐1 via the enhanced formation of insoluble inclusion bodies in E. coli cells. The yield of SN‐1 by the coexpression method was better than that by direct expression in E. coli cells. After refolding and purification, we obtained several milligrams of functionally active SN‐1, the identity of which was verified by MALDI‐TOF MS and NMR studies. The purified recombinant SN‐1 showed effective antimicrobial activity against test organisms. Our studies indicate that the coexpression method using an aggregation‐prone partner protein can serve as a suitable expression system for the efficient production of functionally active SN‐1. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1520–1528, 2017  相似文献   

14.
Previously, we found that baculoviral polyhedrin (Polh) used as a fusion partner for recombinant expression in Escherichia coli showed almost the same characteristics (rapid solubilization under alkaline conditions and specific degradation by specific alkaline proteases in insect midgut) as the native baculoviral Polh, and formed easily isolatable inclusion bodies. Here, Polh derived from the Autographa californica nuclear polyhedrosis virus (AcNPV) was fused with a Bacillus thuringiensis (Bt) toxin protein (truncated Cry1Ac having toxin region as a model Bt toxin) for the novel generation of a new bio-insecticide. The Polh-Cry1Ac fusion protein (approximately 99 kDa) was highly expressed (3.6-fold induction as compared to E. coli-derived single Cry1Ac (approximately 68 kDa)) as an insoluble inclusion body fraction in E. coli. Trypsin and alpha-chymotrypsin, which have similar properties to the insect midgut alkaline proteases, rapidly degraded the Polh portion in vitro, leaving only the toxic Cry1Ac protein behind. In vivo, the Polh-Cry1Ac fusion protein showed high insecticidal activity against the pest, Plutella xylostella. Because this novel bio-insecticide employs E. coli as the host, mass production at a low cost should be possible. Also, since this is a protein-based insecticide, living modified organism (LMO) issues such as environmental and ecological safety can be avoided.  相似文献   

15.
Self-cycling fermentation (SCF), a cyclical, semi-continuous process that induces cell synchrony, was incorporated into a recombinant protein production scheme. Escherichia coli CY15050, a lac(-) mutant lysogenized with temperature-sensitive phage λ modified to over-express β-galactosidase, was used as a model system. The production scheme was divided into two de-coupled stages. The host cells were cultured under SCF operation in the first stage before being brought to a second stage where protein production was induced. In the first stage, the host strain demonstrated a stable cycling pattern immediately following the first cycle. This reproducible pattern was maintained over the course of the experiments and a significant degree of cell synchrony was obtained. By growing cells using SCF, productivity increased 50% and production time decreased by 40% compared to a batch culture under similar conditions. In addition, synchronized cultures induced from the end of a SCF cycle displayed shorter lysis times and a more complete culture-wide lysis than unsynchronized cultures. Finally, protein synthesis was influenced by the time at which the lytic phase was induced in the cell life cycle. For example, induction of a synchronized culture immediately prior to cell division resulted in the maximum protein productivity, suggesting protein production can be optimized with respect to the cell life cycle using SCF.  相似文献   

16.
Escherichia coli has been the host organism most frequently investigated for efficient recombinant protein production. However, the production of a foreign protein in recombinant E. coli often leads to growth deterioration and elevated secretion of acetic acid. Such observed phenomena have been widely linked with cell stress responses and metabolic burdens originated particularly from the increased energy demand. In this study, flux balance analysis and dynamic flux balance analysis were applied to investigate the observed growth physiology of recombinant E. coli, incorporating the proteome allocation theory and an adjustable maintenance energy level (ATPM) to capture the proteomic and energetic burdens introduced by recombinant protein synthesis. Model predictions of biomass growth, substrate consumption, acetate excretion, and protein production with two different strains were in good agreement with the experimental data, indicating that the constraint on the available proteomic resource and the change in ATPM might be important contributors governing the growth physiology of recombinant strains. The modeling framework developed in this work, currently with several limitations to overcome, offers a starting point for the development of a practical, model-based tool to guide metabolic engineering decisions for boosting recombinant protein production.  相似文献   

17.
Expression of recombinant proteins in Escherichia coli often results in the formation of insoluble inclusion bodies, In case of expression of eukaryotic proteins containing cysteine, which may form disulfide bonds in the native active protein, often nonnative inter- and intramolecular disulfide bonds exist in the inclusion bodies. Hence, several methods have been developed to isolate recombinant eukaryotic polypeptides from inclusion bodies, and to generate native disulfide bonds, to get active proteins. This article summarizes the different steps and methods of isolation and renaturation of eukaryotic proteins containing disulfide bonds, which have been expressed in E. coli as inclusion bodies, and shows which methods originally developed for studying the folding mechanism of naturally occurring proteins have been successfully adapted for reactivation of recombinant eukaryotic proteins. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
Three different aerobic fed-batch processes of Escherichia coli were studied, two for the production of a recombinant protein and one process with a wild-type E. coli strain. In all three processes, an accumulation of formate could be observed in the latter part of the process. Analysis of the concentration of DNA in the medium revealed that the release of DNA coincided with the accumulation of formate. It was found that increasing concentrations of DNA correlated in almost linearly increasing concentrations of formate. Formate accumulation is caused by mixed acid fermentation, although no oxygen limitation was measured with the DO electrode. It is proposed that extracellular DNA restrained mass transfer between the bulk medium and the cell. To investigate if the DNA accumulation caused formate production, DNA was removed by continuous feeding of a DNA binding polymer to the medium. The addition of the polymer decreased the content of free DNA in the broth and the formate was reassimilated. Furthermore, additional DNA early in the process resulted in early formate accumulation.  相似文献   

19.
The gene encoding D-amino acid oxidase (DAAO) from Trigonopsis variabilis CBS 4095 has been cloned and expressed in Escherichia coli BL21 (DE3). Unfortunately, it was observed that the host cell was negatively affected by the expressed DAAO, resulting in a remarkable decrease in cell growth. To overcome this problem, we investigated several factors that affect cell growth rate and DAAO production such as addition time of inducer and dissolved oxygen (DO) concentration. The addition time of lactose, which was used as an inducer, and DO concentration appeared to be critical for the cell growth of E. coli BL21 (DE3)/pET-DAAO. A two-stage DO control strategy was developed, in which the DO concentration was controlled above 50% until specific stage of bacterial growth (OD600 30–40) and then downshifted to 30% by changing the agitation speed and aeration rate, and they remained at these rates until the end of fermentation. With this strategy, the maximum DAAO activity and cell growth reached 18.5 U/mL and OD600 81, respectively. By reproducing these optimized conditions in a 12-m3 fermentor, we were able to produce DAAO at a productivity of 19 U/mL with a cell growth of OD600 80.  相似文献   

20.
In this work, multi-parameter flow cytometric techniques, coupled with dual colour fluorescent staining, have been used to study the metabolic consequences of inclusion body formation in high cell density fed-batch cultures of the recombinant E. coli strain MSD3735, producing the IPTG inducible model mammalian protein, AP50. Further, we report on the development of the scale-down, two compartment (STR + PFR) experimental simulation model to study, for the first time, the effect of a changing microenvironment with respect to three of the major spatial heterogeneities that may be associated with large-scale bioprocessing (pH, glucose and dissolved oxygen concentration) on a recombinant bacterial system. Using various time points for induction and various scale-down configurations, it has been shown that inclusion body formation is followed immediately by a detrimental progressive change in individual cell physiological state with respect to both cytoplasmic membrane polarisation and permeability, resulting in a lower final biomass yield. However, the extent of this change was found to be dependent on whether the AP50 protein was induced or not, on the time of induction and on which combination of heterogeneities was being simulated. From this and previous work, it is clear that the scale-down two-compartment model can be used to study the impact of genetically modifying an organism to produce inclusion bodies and any range and combination of potential heterogeneities known to exist at the large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号